
YEAH Hours: HangKarel

10/31/18

Ryan Eberhardt

Using GLabels

let label = GLabel("oh joy");
gw.add(label, WINDOW_WIDTH / 2 - label.getWidth() / 2,
 WINDOW_HEIGHT / 2 + label.getAscent() / 2);

oh joy
(x, y)

getAscent() returns the distance
from the baseline to the top of the

label

getHeight() returns the full height,
including the parts below the

baseline

Using GLabels

● The "baseline" is the line that most letters sit on top of (but letters like j, y, and g
hang over the bottom of the baseline)

● Note: The anchor/reference point of a GLabel is the left baseline, not the top
left that we are used to!

● Useful functions:
○ label.getWidth() and label.getAscent()

○ label.setFont(fontName)

○ label.getText()

○ label.setText(newText)

○ label.setColor(color)

○ label.setLocation(x, y)

HangKarel

Logistics

● Individual assignment
● Also broken into milestones
● Due Monday, Nov 6

Warning: Be careful about types!

● In many places in this assignment, you will have strings and labels
○ A string contains the text that you want to appear

○ A GLabel is the actual thing that is showing on the screen

○ They are different!! You can't concatenate two GLabels together, and you can't set the color of a

string

● Be careful about how you name these variables
○ I use names like dashedStr and dashedLabel to clearly distinguish between types

Milestone 1: Display letters at bottom of window

Milestone 1: Display letters at bottom of window

● Create many GLabels, one for each letter
○ How do you get the letter for each label?

○ You can create an ALPHABET string and get the letter at index i, or use character codes to

generate the character for each loop iteration

● Set the font on the GLabel to a monospaced font
○ An example of setting the label on a font:

label.setFont("bold 20px 'Courier'");
○ Be sure to use the POINTSIZE constants for the font size

● Position the labels so they are centered across the screen
○ You can get the width of a label as label.getWidth(). Note that if you use a monospaced

font, all letter labels will have the same width

○ You can declare a spacing constant and center the letters like you centered the bricks in

Breakout

Milestone 2: Detecting mouse clicks on letters

Milestone 2: Detecting mouse clicks on letters

● When the user clicks a label, set the label's color to INCORRECT_COLOR
● How can we tell what the user clicked?

○ let label = gw.getElementAt(e.getX(), e.getY())

○ Make sure that the user actually clicked something (and didn't just click empty space on the

screen!)

● How can we change the color?
○ Use label.setColor(...)

● Caveat: Later in the program, we will be drawing Karel body parts and other
labels, and we don't want to handle clicks on those letters

○ Define a constant that is the y coordinate of the top of the letters, and only respond to clicks

below that coordinate

Milestone 3: Choose a random secret word and
display it in its hidden form

Milestone 3: Choose a random secret word and
display it in its hidden form

● At the beginning, choose a random word that the player is supposed to guess
(the code for doing this is provided for you in the handout)

● You need to take this string and convert it into a string of dashes, to hide the
word from the user (but show its length and the correctly-guessed characters)

○ For each letter in the original string, add a dash to some new string

● Create a GLabel from the hidden string, set it to a monospaced font, and add it
to your window

Milestone 4: Implement the code that updates
correctly guessed letters

● Check whether the guessed letter is correct or not
● If it is correct, generate a new hidden word string that now shows the guessed

letter
○ There are many ways to do this, and this is one of the most important conceptual parts of the

assignment, so I'm going to avoid giving a solution. Think hard!

● Update the hidden word label using the new string
○ label.setLabel(text)

Milestone 5: Draw successive body parts of Karel
for each incorrect guess

● Use GPolygon, GRect, and GLine to create the shapes of Karel's body parts
● Make sure to decompose this code. You'll probably end up writing a function for

each body part

Milestone 5: Draw successive body parts of Karel
for each incorrect guess

Milestone 6: Determine when the game is over and
display appropriate message

● How can you tell if the user has won the game?
○ Hint: what will the hidden (dashed) string look like?

Extensions

● Be sure to submit a separate file with your extensions
● Possible ideas:

○ Guard a user from guessing the same incorrect letter multiple times

○ Make the graphics fancier (possibly check out the GImage class)

○ Add animations to the graphics

○ Adapt the program for a similar (but different) game

