
TypeScript
Jonathan Kula
12/3/2018

Introducing TypeScript

● A superset of JavaScript. This means that all JavaScript code is valid
TypeScript code!

● TypeScript just adds some new features that will make your life easier.
● TypeScript adds a step between “code” and “browser” that checks your

code for consistency. (This is called the compiler.)
● TypeScript also adds additional syntax so you can tell the compiler what

you’re trying to do; then, it’ll try to help you do that.
● It’s all about making your code more consistent.

function makeCircle(radius, x, y, gw) {
 let oval = GOval(x, y, radius * 2, radius * 2);
 gw.add(oval);
}

let gw = GWindow(400, 400);

makeCircle(50, 200, 200);

function makeCircle(radius, x, y, gw) {
 let oval = GOval(x, y, radius * 2, radius * 2);
 gw.add(oval);
}

let gw = GWindow(400, 400);

makeCircle(50, 200, 200);

function createSquare(config) {
 return {
 width: config.width,
 height: config.height,
 color: config.color,
 area: config.width * config.height,
 perimeter: config.width * 2 + config.height * 2
 }
}

console.log("Creating square with color green!");

let square = createSquare({width: 2, height: 2, colour: "Green"});

console.log("The new square's color is: " + square.color);

function createSquare(config) {
 return {
 width: config.width,
 height: config.height,
 color: config.color,
 area: config.width * config.height,
 perimeter: config.width * 2 + config.height * 2
 }
}

console.log("Creating square with color green!");

let square = createSquare({width: 2, height: 2, colour: "Green"});

console.log("The new square's color is: " + square.color);

Type Annotation

let variableName: TypeName;

const CONSTANT_NAME: TypeName;

function functionName(param1: Type1, param2: Type2): ReturnType {

Type Annotation

let age: number = 20;

const ALPHABET: string = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

function divides(divisor: number, dividend: number): boolean {

Type Inference

let foo = "Hello";

let foo: string = "Hello";

These statements are equivalent because of type inference.

Type Inference

let foo = 1;

let foo: string = 1;

These statements are not equivalent because of type inference.
(The second statement throws an error; 1 is not a string!)

What types are there?

● Here are types you’ve worked with!
○ number
○ string
○ boolean
○ null
○ undefined
○ object
○ function
○ any

What types are there?

● Here are types you’ve worked with!
○ number
○ string
○ boolean
○ null
○ undefined
○ object
○ function
○ any

Primitive Types:
“simple” types –
You build all other
types out of primitive
types.

What types are there?

● Here are types you’ve worked with!
○ number
○ string
○ boolean
○ null
○ undefined
○ object
○ function
○ any

Primitive Types:
“simple” types –
You build all other
types out of
primitive types.
Non-Primitive Types:
Everything else.

What types are there?

● Here are types you’ve worked with!
○ number
○ string
○ boolean
○ null
○ undefined
○ object
○ function
○ any

Primitive Types:
“simple” types –
You build all other
types out of
primitive types.
Non-Primitive Types:
Everything else.
any:
A special type that can
represent anything!

What types are there?

● Here are types you’ve worked with!
○ number
○ string
○ boolean
○ null
○ undefined
○ object
○ function
○ any

● And some types you haven’t.
○ symbol
○ never

Primitive Types:
“simple” types –
You build all other
types out of
primitive types.
Non-Primitive Types:
Everything else.
any:
A special type that can
represent anything!

← ask me about these after class!

What types are there?

● Here are types you’ve worked with!
○ number
○ string
○ boolean
○ null
○ undefined
○ object
○ function
○ any

Primitive Types:
“simple” types –
You build all other
types out of
primitive types.
Non-Primitive Types:
Everything else.
any:
A special type that can
represent anything!

What types are there?

● Here are types you’ve worked with!
○ number
○ string
○ boolean
○ null
○ undefined
○ object
○ function
○ any

← Seems like this describes an awful lot...

let dog = {
 type: 'mammal',
 name: 'dog',
 sounds: ['woof', 'bark', 'yip',
'ruff']
};
let cat = {
 type: 'mammal',
 name: 'cat',
 sounds: ['meow', 'purr', 'hiss']
};

let enigma = {
 rotors: [],
 lamps: [],
 keys: []
};

let key = {};
key.letter = "A";
key.mouseDownAction = function () {

};

let profile = {
 name: "Jonathan Kula",
 imageUrl: "http://image.url/img.png",
 language: "English"
};

let jonathan = {
 favoriteColor: "Green",
 name: "Jonathan Kula",
 status: "Active",
 classes: [
 {
 name: "CS106AJ",
 role: "SL",
 grade: -1
 },
 {
 name: "CS103",
 role: "Student",
 grade: 87.5
 }
]
};

Interfaces

● Interfaces describe the structure of objects.

Interfaces

● Interfaces describe the structure of objects.
● Interfaces are not objects.
● Interfaces have no functionality – they only describe other objects.

interface InterfaceName {
 property1: Type1
 property2: Type2
}

Interfaces

● Interfaces describe the structure of objects.
● Interfaces are not objects.
● Interfaces have no functionality – they only describe other objects.

interface Point {
 x: number
 y: number
}

Function Annotations

● What if we wanted to make an interface for an Enigma key?

Function Annotations

● What if we wanted to make an interface for an Enigma key?

interface WithFunction {
 func: (param1: Type1, param2: Type2) => ReturnType
}

Function Annotations

● What if we wanted to make an interface for an Enigma key?

interface Key {
 letter: string
 onMouseDown: () => void
}

● void is a special type meaning “doesn’t return anything”

Map Annotations

● What about using objects as maps?

Map Annotations

● What about using objects as maps?

interface Phonebook {
 [name: KeyType]: ValueType
}
● The KeyType can be either string or number.

Map Annotations

● What about using objects as maps?

interface Phonebook {
 [name: string]: string
}

● The KeyType can be either string or number.

Classes in TypeScript

● Think of them like “Interfaces with functionality”
● You use “class-like factory functions” in Teaching Machine, Adventure, and

when coding using object-oriented ideas.
● Classes are types too, much like interfaces!

Classes in TypeScript

● Make an object of a class by using the new keyword.
● Refer to properties of the class using the this keyword.
● this inside a class refers to “the current object.”

let jonathan = new Profile("Jonathan Kula", "http://image.url/", "English");
let ryan = new Profile("Ryan Eberhardt", "http://image.url/", "English");

jonathan.getName(); // “this” now refers to jonathan – returns “Jonathan Kula”
ryan.getName(); // “this” now refers to ryan – returns “Ryan Eberhardt”

Acquiring Typescript

● Download nodejs LTS from https://nodejs.org/en/
● Open a Powershell (Windows) or Terminal (macOS or Linux)
● Type npm install -g typescript

https://nodejs.org/en/

Setting Up Typescript

● Download TypeScript configuration file from the course website.
○ I can break it down after class if you’re interested!

● Put that file in your project folder.

Using TypeScript

Manually:

● Open Powershell/Terminal, go to your project directory using cd, then type
tsc to build all .ts files into .js files!

Better:

● Get an IDE that supports TypeScript!
● I use both WebStorm and Visual Studio Code.

○ I prefer WebStorm, but it’s only free while you’re a student. Visual Studio Code is also quite
good, and free. I have a slide deck about how to acquire WebStorm here.

https://docs.google.com/presentation/d/1I24BiKt8_kQ1c8OcQGkxjjJfgwMrFT_h691DfVnn9NI/edit#slide=id.p

