
CS106AJ Midterm Review Session
October 28, 2018

Ryan Eberhardt

Game plan
● Quickly run through course material

○ If you see material you are uncomfortable with, make a note of it and we can do some practice

problems

○ You don’t have to have all of this memorized. (In fact, that’s probably not a good use of time.)

However, you should feel familiar with it such that you can remember what you need, find it in the

book, and use it to solve a problem.

● Talk tips for taking the midterm

● Work through practice problems

Topics on the midterm
1) Karel

2) Code tracing:

a) JavaScript Expressions

b) Functions and closures

3) Simple JavaScript Programs (loops)

4) Graphics and animation

5) String manipulation

* One question pulled directly from course reader

Karel
● Functions

○ move()
○ turnLeft()
○ pickBeeper()
○ putBeeper()

● Control flow

○ repeat (count) {}
○ while (condition) {}
○ if (condition) {}

Karel

Karel
● Remember that you cannot use variables, break, return, etc!

● Karel problems will mostly be algorithmic and decomposition challenges. Have a

plan for how you are going to structure your program before you write it!

○ We aren’t grading you on style (so decomposition and comments won’t affect your grade).

However, good decomposition will make it much easier to solve the problem.

○ Be sure to write out preconditions and postconditions for your functions. Make sure that given the

precondition, your function will always satisfy the postcondition. This will make it much easier to

trace through the code in your head

○ Work through some test worlds visually to make sure your algorithm works. (Use an eraser to

represent Karel’s position)

Expressions and Operators
● Operators

○ *, /, %, +, -
○ Order of operations matters!

● Variables

○ let vs const

Expressions and Operators

Loops
● for loop

○ for (initialization; condition; do something on every iteration) {

// do stuff

}

○ Print 0, 2, 4, 6, 8:

for (let i = 0; i < 10; i += 2) {
console.log(i);

}

● while loop

● Use a for loop when you know how many times you will be looping

Loops
● for loop

● while loop

○ while(condition) {

// do stuff

}

○ while (n != 1) {
// do stuff

}

● Use a for loop when you know how many times you will be looping

Functions
● (Optionally) takes some input, does something, and (optionally) returns some

output

● Syntax:

function calcHypotenuse(a, b) {
return Math.sqrt(a * a + b * b);

}

Or:

let calcHypotenuse = function(a, b) {
return Math.sqrt(a * a + b * b);

};

Functions
● Important things to know

○ Variables in one function are not accessible in a different function (as long as the functions aren’t

nested)! If you want to share variables, you need to pass them as parameters

function main() {
let str = "hello world";
print();

}
function print() {

console.log(str); // error!
}

○ Parameters are passed by order, not by name

○ (Most) parameters get copied when you pass them. If you want to modify a parameter, you need to

return it to the code that called the function

Functions
● Important things to know

○ Variables in one function are not accessible in a different function (as long as the functions aren’t

nested)! If you want to share variables, you need to pass them as parameters

○ Parameters are passed by order, not by name:

function main() {
let a = "a";
let b = "b";
print(b);

}
function print(a) {

console.log(a);
}

○ (Most) parameters get copied when you pass them. If you want to modify a parameter, you need to

return it to the code that called the function

Functions
● Important things to know

○ Variables in one function are not accessible in a different function (as long as the functions aren’t

nested)! If you want to share variables, you need to pass them as parameters

○ Parameters are passed by order, not by name:

function main() {
let a = "a";
let b = "b";
print(b);

}
function print(a) {

console.log(a); // prints "b"
}

○ (Most) parameters get copied when you pass them. If you want to modify a parameter, you need to

return it to the code that called the function

Functions
● Important things to know

○ Variables in one function are not accessible in a different function (as long as the functions aren’t

nested)! If you want to share variables, you need to pass them as parameters

○ Parameters are passed by order, not by name

○ (Most) parameters get copied when you pass them. If you want to modify a parameter, you need to

return it to the code that called the function

Functions
● Important things to know

○ Variables in one function are not accessible in a different function (as long as the functions aren’t

nested)! If you want to share variables, you need to pass them as parameters

○ Parameters are passed by order, not by name

○ (Most) parameters get copied when you pass them. If you want to modify a parameter, you need to

return it to the code that called the function

function main() {
let a = 0;
addTwo(a);
console.log(a);

}
function addTwo(num) {

num = num + 2;
}

Functions
● Important things to know

○ Variables in one function are not accessible in a different function (as long as the functions aren’t

nested)! If you want to share variables, you need to pass them as parameters

○ Parameters are passed by order, not by name

○ (Most) parameters get copied when you pass them. If you want to modify a parameter, you need to

return it to the code that called the function

function main() {
let a = 0;
addTwo(a);
console.log(a); // prints 0

}
function addTwo(num) {

num = num + 2;
}

Functions
● Important things to know

○ Variables in one function are not accessible in a different function (as long as the functions aren’t

nested)! If you want to share variables, you need to pass them as parameters

○ Parameters are passed by order, not by name

○ (Most) parameters get copied when you pass them. If you want to modify a parameter, you need to

return it to the code that called the function

function main() {
let a = 0;
a = addTwo(a);
console.log(a); // prints 2

}
function addTwo(num) {

num = num + 2;
return num;

}

Functions
● Important things to know

○ Variables in one function are not accessible in a different function (as long as the functions aren’t

nested)! If you want to share variables, you need to pass them as parameters

○ Parameters are passed by order, not by name

○ (Most) parameters get copied when you pass them. If you want to modify a parameter, you need to

return it to the code that called the function

■ Caveat: GObjects can be modified, but they can’t be reassigned.

● Tip for trace problems: draw “stack cards” to illustrate the value of variables in

each function

Closures
● A nested function gets access to all of its parent’s variables

○ function main() {
let str = "hello world";
function print() {

console.log(str); // works!
}
print();

}

● This works for functions nested arbitrarily deep (although stylistically, you

shouldn’t do that)

● Important for timers (via setTimeout or setInterval) and mouse event

handlers

● Style note (not important for midterm): don’t abuse/overuse closures!

Graphics
● <script type='text/javascript'

src='http://cs106aj.stanford.edu/jslib/JSGraphics.js'>
</script>

● Remember that coordinates specify the top-left of an object

● let gw = GWindow(width, height);
let line = GLine(x0, y0, x1, y1);
let oval = GOval(x, y, diameterX, diameterY);
let rect = GRect(x, y, width, height);

Graphics
● Remember that coordinates for GArc, GCompound, and GPolygon specify the

origin that you defined when creating the object. This might be better understood

through example.

var diamond = GPolygon();
diamond.addVertex(-DIAMOND_WIDTH / 2, 0);
diamond.addVertex(0, DIAMOND_HEIGHT / 2);
diamond.addVertex(DIAMOND_WIDTH / 2, 0);
diamond.addVertex(0, -DIAMOND_HEIGHT / 2);

gw.add(diamond, gw.getWidth() / 2, gw.getHeight() / 2);

Graphics
let compound = GCompound();

compound.add(GRect(-width/2, -height/2, width, height));
compound.add(GRect(-width/2, -height/2, width/2, height/2));
compound.add(GRect(-width/2, 0, width/2, height/2));

Graphics
● Tips for graphics problems:

○ Draw it out! Draw what the screen should look like. Then figure out the coordinates that are

necessary for the screen to look like that

○ If you’re dealing with many shapes (like the pyramid problem), it doesn’t hurt to draw an example

situation (e.g. BRICKS_IN_BASE = 3) and manually figure out the coordinates for each individual

brick. Then, try to figure out a general formula that applies for any brick.

○ If you are dealing with animations, figure out what variables you will need ahead of time. Leave

extra room. Be careful of where you define your variables:

■ Variables defined in a step function will be reset on every step

■ Variables defined in one closure function will not be available to a different closure function

Graphics

Graphics

Graphics

Graphics
● Mouse events:

function listenerFunction(e) {
console.log(e.getX());

}
gw.addEventListener("click", listenerFunction);

Graphics

Graphics
● Timer events

○ Events that occur after a specific time interval

○ Allows you to add animation to a JavaScript program

● Timer functions

○ let timer = setTimeout(func, delay)
■ “One-shot” timer

○ let timer = setInterval(func, delay)
■ Repeated timer

○ clearTimeout(timer)

RandomLib.js
● <script type='text/javascript'

src='http://cs106aj.stanford.edu/jslib/RandomLib.js'>
</script>

● See pg 123 of course reader

● randomInteger(low, high); // [low, high] inclusive
● randomReal(low, high); // [low, high) inclusive, exclusive
● randomChance(probability);
● randomColor();

Strings
● Ordered collection of characters

● Represented in quotes

○ Example: "CS106J is awesome!"
○ Example: ""

● Character positions in a string are identified by an index

○ Indices begin with 0, not 1

○ let exam = "The midterm"
○ exam.charAt(0) -> "T"
○ exam.charAt(5) -> "i"
○ exam.length -> 11
○ exam.indexOf("m") -> 4

Strings
● Concatenation

○ Fancy word for combining strings together

○ Ex: "Jerry Cain and " + "Eric Roberts" -> "Jerry Cain and Eric Roberts"

● Substrings

○ Extract parts of a string

○ str.substring(p1, p2)
■ p1 is first index position in desired substring

■ p2 is index immediately following the last index you want

● Comparison

○ a === b to check if strings a and b are equal

○ if a < b, a comes before b in dictionary

○ if a > b, comes after b in dictionary

Strings

Strings
● Strings are immutable

○ let s = "hello!";
s.toUpperCase();
console.log(s);

Strings
● Strings are immutable

○ let s = "hello!";
s.toUpperCase();
console.log(s); // prints "hello!"

Strings
● Strings are immutable

○ let s = "hello!";
s = s.toUpperCase();
console.log(s); // prints "HELLO!"

● In most string problems, we take some existing string, loop over its characters,

and build up a new string from scratch

● Try to come up with an approach in your head before you think about any code

Tips for your first CS midterm
● Don’t panic!

○ You can do this. Try writing out different things or try thinking through different approaches.

Don’t sit and stare; move on and come back if you’re stuck

● Go in with a plan (e.g. write pseudocode or write your approach)

● Leave extra space between your lines

● Make sure you’re familiar with the book or with your notes

○ Be able to look things up quickly

● Commenting is optional but can be a really good idea

○ Commenting helps your grader figure out what you were doing and can help us give you partial

credit

