
Data-Driven Programs

Jerry Cain
CS 106AJ

November 16, 2018
slides courtesy of Eric Roberts, with edits by me

Once upon a time . . .

Computing and the Counterculture
Two recent books argue that the personal computing revolution
owes as much to the counterculture of the 1960s as it does to the
technological strength and entrepreneurial spirit of Silicon Valley.

Ted Nelson’s Cyberspace Dreams
The countercultural vision comes across particularly clearly in the
two-sided book Computer Lib/Dream Machines which was written
by cyberspace visionary Ted Nelson in 1974.

Data-Driven Programs

Data-Driven Programs
• In most programming languages, data structures are easier to

manipulate than code. As a result, it is often useful to design
applications so that as much of their behavior as possible is
represented as data rather than in the form of methods.
Programs that work this way are said to be data driven.

• In a data-driven system, the actual program (which is called a
driver) is usually very small. Such driver programs operate in
two phases:

Read data from a file into a suitable internal data structure.1.
Use the data structure to control the flow of the program.2.

• To illustrate the idea of a data-driven system, we’re going to
spend most of this lecture building a programmed-instruction
"teaching machine" of the sort that Ted Nelson discusses
(mostly critically) in Dream Machines.

A New Approach to Files
• Older versions of the teaching machine program in the

textbook read the series of course questions from a plain text
file chosen by the user.

• Although the file-based model is standard practice in most
other programming languages, it doesn’t make sense for
CS 106AJ. Security considerations make traditional file
reading in JavaScript too cumbersome to use.

• Fortunately, JavaScript offers an elegant solution to the
problem. All you need to do is store the necessary data in the
index.html file, which JavaScript programs can always read.

• CS106AJ uses this strategy for both the teaching machine
example and the Adventure assignment, which should make
your lives much easier after the Thanksgiving holidays.

XML and the DOM
• The index.html file is written in the Hypertext Markup

Language (HTML), which is a subset of the Extensible
Markup Language (XML). In recent years, XML has become
the industry standard for representing hierarchical data.

• Modern browsers parse all the XML data in the index.html
file and store that information in an internal form called the
Document Object Model (DOM).

• Much of JavaScript’s undeserved negative reputation comes
from the fact that the DOM is a complete mess.

• In general, the best strategy is to use as little of the DOM as
possible. The three methods and one property outlined on the
next page are all you need.

• To keep the user data from appearing on the page, you need to
embed its XML in a <div style="display:none;"> block.

element.innerHTML Returns the HTML under the
jurisdiction of an element.

Four Handy DOM Directives

document.getElementById(id) Returns the element with the
specified id attribute.

element.getElementsByTagName(name) Returns an array of the elements
with the specified tag name.

element.getAttribute(name) Returns the value of the named
attribute.

Sample DOM Method Calls
<div style="display:none;">
<question id="Numbers1">
True or false: Numbers in JavaScript may contain a decimal point.
<answer response="true" nextQuestion="Finish" />
<answer response="false" nextQuestion="Numbers2" />

</question>
<question id="Numbers2">
True or false: Numbers can be negative.
<answer response="true" nextQuestion=”Finish" />
<answer response="false" nextQuestion="Numbers1" />

</question>
<question id="Finish">
You seem to have mastered JavaScript. Start over?
<answer response="yes" nextQuestion="Numbers1" />
<answer response="no" nextQuestion="EXIT" />

</question>
</div>

• let question = document.getElementById("Numbers2") would return an object representing the
second question element, and everything descending from it. I highlight what's modeled by question in green.

• let answers = question.getElementsByTagName("answer") would return an length-2 array of two
objects—the 0th object models the second question's response to "true", and the 1th object models the second
question's response to "false". The HTML elements modeled by these two objects are italicized.

• let next = answers[0].getAttribute("nextQuestion") would return the "Finish", since that’s
the string value attached to answers[0]'s. nextQuestion attribute. The relevant "Finish" is underlined.

• console.write(question.innerHTML + "
") would print "True or false: Numbers can
be negative."

/**
* This program executes a programmed instruction course
* as discussed in Section 12.5 of the course reader.
*/

function TeachingMachine() {

let askQuestion = function() {
console.write(questionXML.innerHTML + "
");
console.requestInput("> ", checkAnswer);

};

let checkAnswer = function(response) {
let answerXML = getAnswerXML(response.toLowerCase());
if (answerXML === null) {

console.log("I don't understand that answer.");
} else {

let questionID = answerXML.getAttribute("nextQuestion");
if (questionID === "EXIT") return;
questionXML = document.getElementById(questionID);

}
askQuestion();

};

Reader code for the TeachingMachine

let getAnswerXML = function(response) {
let answers = questionXML.getElementsByTagName("answer");

for (let i = 0; i < answers.length; i++) {
let answerXML = answers[i];
let possibility = answers[i].getAttribute("response");
possibility = possibility.toLowerCase();
if (possibility === response || possibility === "*") {

return answerXML;
}

}

return null;
};

let questionXML = document.getElementsByTagName("question")[0];
askQuestion();

}

Reader code for the TeachingMachine

Redesigning TeachingMachine
• As presented in the reader, the TeachingMachine is a lovely

example that uses data—in particularly, data embedded as
XML within the index.html file—to drive an executable.

• There are benefits, however, to ingesting all of the XML into
JavaScript data structures so they are more quickly and easily
manipulated.

• The teaching machine teaches a single course composed of
questions, where each question is composed of a statement
and a collection of correct and incorrect answers.

• The next several slides provide a defense for an object-
oriented approach to building the TeachingMachine and
speak to the design and implementation of several classes to
model courses, questions, and answers.

Designing Data Structures
• When you design data structures for a large program, one of

the first tasks you need to undertake is understanding how the
underlying data structures fit together and how each level of
the data hierarchy can best be represented.

• This process is similar to that of decomposing a large problem
into a set of successively simpler sub-problems. In the data
domain, the information your program needs to process must
be decomposed into successively simpler data structures until
everything can be represented using a built-in JavaScript
value, such as a number or a string.

• The tools for data decomposition you have seen so far include
– Arrays, which implement sequences of values
– Aggregates, which represent collections of related values
– Maps, which establish a relationship between keys and values

course

Choosing an Internal Representation
The first step in building an OO teaching machine is to design a set
of classes that can represent the data and their relationships. All
the relevant data should be accessible from a single structure that
stores the information in a nested series of classes.

TMCourse

questions

map id ® question

TMQuestion
html

answers

map string ® id

Converting XML to Internal Form
course

questions

html

answers

"START"

"Q1"
"Q2"

html

answers

html

answers

"true"
"false"

"Q3"
"Q2"

"true"
"false"

"Q3"
"Q1"

"yes"
"no"

"Q1"
"EXIT"

"True or false: Numbers can"

"have fractional parts."

"You seem to have mastered"

"JavaScript. Start over?"

"True or false: Numbers can"

"be negative."

"That's incorrect."

"Q3"

<div style="display: none">
<question name="Q1">
True or false: Numbers can
have fractional parts.
<answer response="true"

nextQuestion="Q3" />
<answer response="false"

nextQuestion="Q2" />
</question>
<question name="Q2">
That's incorrect.
True or false: Numbers can
be negative.
<answer response="true"

nextQuestion="Q3" />
<answer response="false"

nextQuestion="Q1" />
</question>
<question name="Q3">
You seem to have mastered
JavaScript. Start over?
<answer response="yes"

nextQuestion="Q1" />
<answer response="no"

nextQuestion="EXIT" />
</question>
</div>

/*
* File: TeachingMachine.js
* ------------------------
* This program serves as the entry point to a more
* object-oriented realization of the teaching machine
* discussed in the textbook, and will serve as a much
* better template for your Adventure assignment than the
* version in the course reader.
*/

function TeachingMachine() {
let course = TMCourse();
if (course === undefined) {

console.log("No course is defined in the HTML file");
} else {

course.run();
}

}

New code for the TeachingMachine

/*
* File: TMCourse.js
* -----------------
* This class defines the data structure for a course used by
* the TeachingMachine program.
*/

/*
* Creates a TMCourse object by extracting data from
* the index.html file.
*/

function TMCourse() {
let questions = readQuestions();
let currentQuestion = questions["START"];
function askQuestion() { /* code on next slide */ }
function checkAnswer() { /* code on next slide */ }
let course = {};
course.run = askQuestion;
return course;

}

Code for the TMCourse Class

/*
* File: TMCourse.java
* -------------------
* This class defines the data structure for a course for use with
* the TeachingMachine program.
*/

/* Constants */

const MARKER = "-----";

/*
* Creates a new course for the teaching machine by reading the
* data from the specified file, which consists of questions and
* their accepted answers.
*/

function TMCourse(filename) {
.
.
.

}

function askQuestion() {
currentQuestion.printQuestionText();
console.requestInput("> ", checkAnswer);

};

function checkAnswer(line) {
let questionID = currentQuestion.getNextQuestion(line);
if (questionID === "EXIT") return;
if (questionID === undefined) {

console.log("I don't understand that response.");
} else {

currentQuestion = questions[questionID];
}
askQuestion();

};

The TMCourse.run Method

/**
* Class: TMQuestion
* -----------------
* This class represents a question for the teaching machine.
* Intuitively, a TMQuestion object encapsulates the HTML markup
* and a map from each permitted answer to the next question id.
*
* The supplied parameters are private to the implementation
* and are only accessed by invoked TMQuestion methods.
*/

function TMQuestion(html, answers) {
let question = {};
question.printQuestionText = function() {

console.write(html + "
");
};
question.getNextQuestion = function(answer) {

let match = answers[answer.toLowerCase()];
if (match === undefined) match = answers["*"];
return match;

};
return question;

}

Code for the TMQuestion Class

/**
* Creates the questions data structure by reading the elements
* with the tag "question" from the XML for the course. To ensure
* that the course starts with the first question in the file, the
* map stores a reference to that question under the key "START".
*/

function readQuestions() {
let elements = document.getElementsByTagName("question");
if (elements.length === 0) return undefined;
let questions = {};
for (let i = 0; i < elements.length; i++) {

let questionXML = elements[i];
let id = questionXML.getAttribute("id");
let html = questionXML.innerHTML;
let answers = readAnswers(questionXML);
questions[id] = TMQuestion(html, answers);
if (i === 0) questions["START"] = questions[id];

}
return questions;

}

The readQuestions Function

/**
* Reads the data structure containing the answers, which maps
* user responses to the DOM id of the next question.
*/

function readAnswers(questionXML) {
let answers = { };
let elements = questionXML.getElementsByTagName("answer");
for (let i = 0; i < elements.length; i++) {

let answerXML = elements[i];
let response = answerXML.getAttribute("response");
let nextQuestion = answerXML.getAttribute("nextQuestion");
answers[response.toLowerCase()] = nextQuestion;

}
return answers;

}

The readAnswers Function

The End

