
JavaScript and OOP

Jerry Cain
CS 106AJ

November 12, 2018
slides courtesy of Eric Roberts

Once upon a time . . .

Object-Oriented Programming

Kristen Nygaard Ole Johan Dahl

The most prestigious prize in
computer science, the ACM Turing
Award, was given in 2002 to two
Norwegian computing pioneers,
who jointly developed SIMULA in
1967, which was the first language
to use the object-oriented paradigm.

In addition to his work in computer
science, Kristen Nygaard also took
an active role in making sure that
computers served the interests of
workers, not just their employers.
In 1990, Nygaard’s social activism
was recognized in the form of the
Norbert Wiener Award for Social
and Professional Responsibility.

JavaScript and OOP

Review: Clients and Interfaces
• Libraries—along with programming abstractions at many

other levels—can be viewed from two perspectives. Code
that uses a library is called a client. The code for the library
itself is called the implementation.

• The point at which the client and the implementation meet is
called the interface, which serves as both a barrier and a
communication channel:

interface

client implementation

David Parnas on Modular Development
• David Parnas is Professor of Computer

Science at Limerick University in Ireland,
where he directs the Software Quality
Research Laboratory, and has also taught at
universities in Germany, Canada, and the
United States.

• Parnas's most influential contribution to
software engineering is his groundbreaking
1972 paper "On the criteria to be used in
decomposing systems into modules," which
laid the foundation for modern structured
programming. This paper appears in many
anthologies and is available on the web at
http://portal.acm.org/citation.cfm?id=361623

Information Hiding

• One of the central principles of modern software design is
that each level of abstraction should hide as much complexity
as possible from the layers that depend on it. This principle is
called information hiding.

• When you use a function, for example, it is more important to
know what the function does than to understand exactly how
it works. The underlying details are of interest only to the
programmer who implements the function. Clients who use
that function as a tool can usually ignore the implementation
altogether.

Our module structure is based on the decomposition criteria
known as information hiding. According to this principle,
system details that are likely to change independently should
be the secrets of separate modules.

David Parnas, Paul Clements, and David Weiss,
“The modular structure of complex systems,” 1984

—

Thinking About Objects

with thanks to Randall Munroe at xkcd.com

client implementationabstraction boundary

I need a bunch of GRects.

JSGraphics
library
GRect
GOval
GLine
GLabel

...

GRect class
location
size
color
fill status
fill color

JSGraphics
library
GRect
GOval
GLine
GLabel...

Principles of Object-Oriented Design
• Object-oriented programming can be characterized by several

important features. Informally, object-oriented programming
differs from earlier programming paradigms in that it focuses
attention on the data objects rather than the code.

• In practice, this idea of making objects the center of attention
can be expressed as three principles:

Integration. Objects should combine the internal representation
of the data with the operations that implement the necessary
behavior into an integrated whole.

1.

Encapsulation. Insofar as possible, objects should restrict the
client’s access to the internal state, mediating all communication
across the interface boundary through the use of methods.

2.

Inheritance. Objects should be able to inherit behavior from
other, more general object classes.

3.

Turning Points into Objects
• On Friday, I defined the following factory method to create a

Point as an aggregate of an x and a y value:

function Point(x, y) {
if (x === undefined) {

x = 0;
y = 0;

}
return { x: x, y: y };

}

• The goal in the next few slides is to turn this aggregate into a
data structure that more closely resembles an object in the
sense that the term is used in object-oriented programming.

Adding Methods
• A method is a function that belongs to an object. Given that

functions are first-class values in JavaScript, it is perfectly
legal to assign a function to one of the fields in an aggregate.
Those functions are then JavaScript methods and are invoked
using the traditional receiver syntax for methods:

object.name(arguments)

• Methods, however, are not very useful unless they can have
access to the fields of the object to which they apply.

• JavaScript addresses this problem by defining a keyword this
that automatically refers to the receiver for the current method
call. Thus, in the earlier example, any references to this
inside the method name refer to object.

• The next slide adds getX and getY methods to the Point class.

/*
* Creates a new Point object. If this factory function is
* called with no arguments, it creates a Point object at the
* origin. This version of the Point factory defines the
* getter methods getX and getY.
*/

function Point(x, y) {
if (x === undefined) { x = 0; y = 0; }
return {

x: x,
y: y,
getX: function() { return this.x; },
getY: function() { return this.y; }

};
}

A Method-Based Definition of Point

Keeping Data Private

• Although the example on the previous slide supports the
syntax of object-oriented programming by defining the getX
and getY methods, it doesn’t support the object-oriented
principle of encapsulation because the x and y fields are visible
to clients.

• To ensure that variables are completely private to the object in
JavaScript, the best strategy is to ensure that those variables
are part of the closure that defines the method and not define
them as fields.

• The code that results from applying this strategy appears on
the next slide. This approach has several advantages:
– The data values x and y are inaccessible to clients.

– The code is several lines shorter.

– The keyword this is no longer required.

/*
* Creates a new Point object. If this factory function is
* called with no arguments, it creates a Point object at the
* origin. This version of the Point factory ensures that the
* data fields are in the function closure, which makes them
* inaccessible outside the function, even though they are
* available to the getter methods getX and getY.
*/

function Point(x, y) {
if (x === undefined) { x = 0; y = 0; }
return {

getX: function() { return x; },
getY: function() { return y; }

};
}

An Encapsulated Point Class

Converting Objects to Strings
• JavaScript makes it possible for implementers to define how

objects of a particular class are displayed by console.log or
how they combine with strings through concatenation.

• When JavaScript needs to convert an object to a string, it
checks to see whether that object defines a toString method.
The toString method takes no arguments and returns a string
that represents the desired textual appearance of the value.

• The code on the next slide adds a toString method to the
Point class.

/*
* Creates a new Point object. If this factory function is
* called with no arguments, it creates a Point object at the
* origin. This version of the Point factory ensures that the
* data fields are in the function closure, which makes them
* inaccessible outside the function, even though they are
* available to the getter methods getX and getY. This version
* also exports a toString method.
*/

function Point(x, y) {
if (x === undefined) { x = 0; y = 0; }
return {

getX: function() { return x; },
getY: function() { return y; },
toString: function () {

return "(" + x + ", " + y + ")";
}

};
}

Adding a toString Function

Rational Numbers
• In my introduction of aggregates last Friday, I could have

offered the example of rational numbers, which are a single
unit with a numerator and a denominator.

• To get a sense of how rational numbers might in some cases
be preferable to the numeric approximations that JavaScript
uses, try to predict the output of the following program:

function FractionSum() {
let a = 1/2;
let b = 1/3;
let c = 1/6;
let sum = a + b + c;
console.log("1/2 + 1/3 + 1/6 = " + sum);

}

JavaScript Console

1/2 + 1/3 + 1/6 = 0.9999999999999999

JavaScript Numbers Are Approximations
• The reason that the program on the previous slide produces a

surprising answer is that most fractions do not have a precise
binary representation but are instead stored as approximations.

• For example, the fractions 1/3 and 1/6 cannot be represented
exactly. When you add these together with 1/2, the result is
not the expected value. By contrast, arithmetic with rational
numbers is exact.

• Rational numbers support the standard arithmetic operations:

a
b + c

d = ad + bc
bd

a
b – c

d = ad – bc
bd

a
b

x c
d = ac

a
b

c
d =..

bd

ad
bc

Addition:

Subtraction:

Multiplication:

Division:

Implementing the Rational Class
• The next two slides show the code for the Rational class

along with some brief annotations.
• As you read through the code, the following features are

worth special attention:
– The factory method takes zero, one, or two parameters. Calling

Rational with no arguments returns the rational equivalent of
0, calling it with one argument creates an integer, and calling it
with two arguments creates a fraction.

– The constructor makes sure that the number is reduced to lowest
terms. Moreover, since these values never change once a
Rational is created, this property will remain in force.

– Operations are specified using the receiver syntax. When you
apply an operator to two Rational values, one of the operands
is the receiver and the other is passed as an argument, as in

r1.add(r2)

/*
* This class represents a rational number, which is defined as
* the quotient of two integers.
*/

function Rational(x, y) {
if (x === undefined) x = 0;
if (y === undefined) y = 1;
let g = gcd(Math.abs(x), Math.abs(y));
let num = x / g;
let den = Math.abs(y) / g;
if (y < 0) num = -num;

return {
. . . see object definition on next slide . . .

};
}

/* Include definition of gcd from Chapter 3 */

The Rational Class

The factory method looks
for missing arguments and
assigns default values. It
then calls gcd to reduce the
fraction to lowest terms.
Finally, it makes sure that
the denominator is positive.

/*
* This class represents a rational number, which is defined as
* the quotient of two integers.
*/

function Rational(x, y) {
if (x === undefined) x = 0;
if (y === undefined) y = 1;
let g = gcd(Math.abs(x), Math.abs(y));
let num = x / g;
let den = Math.abs(y) / g;
if (y < 0) num = -num;

return {
. . . see object definition on next slide . . .

};
}

return {
getNum: function() { return num; },
getDen: function() { return den; },
add: function(r) {

return Rational(num * r.getDen() + r.getNum() * den,
den * r.getDen());

},
sub: function(r) {

return Rational(num * r.getDen() - r.getNum() * den,
den * r.getDen());

},
mul: function(r) {

return Rational(num * r.getNum(), den * r.getDen());
},

div: function(r) {
return Rational(num * r.getDen(), den * r.getNum());

},
toString: function() {

if (den === 1) return "" + num;
return num + "/" + den;

}
};

The Rational Class

Rational Numbers Are Exact
• Here is the same program using the Rational class.

function RationalSum() {
let a = Rational(1, 2);
let b = Rational(1, 3);
let c = Rational(1, 6);
let sum = a.add(b).add(c);
console.log("1/2 + 1/3 + 1/6 = " + sum);

}

JavaScript Console

1/2 + 1/3 + 1/6 = 1

Inheritance
• Object-oriented languages allow one class to inherit behavior

from another. For example, classes like GRect and GOval
inherit behavior from GObject.

• The simplest way to implement inheritance in JavaScript is to
have the factory method for the subclass call the factory
method for the superclass and then add fields to the result.

• This model is illustrated in the text using the Employee class
and the subclasses HourlyEmployee, SalariedEmployee,
and CommissionedEmployee.

• None of the assignments or section problems require you to
implement inheritance, and the topic will not appear on the
final exam. It's mentioned here because it's a hallmark feature
of advanced OOP, and will be reintroduced in CS106B.

The End

