
Objects as Aggregates

Jerry Cain
CS 106AJ

November 7, 2018
slides courtesy of Eric Roberts

Objects in JavaScript
• JavaScript uses the word "object" in a frustratingly imprecise

way.

• Unsurprisingly, the word "object" is used for the encapsulated
data collections one finds in the object-oriented programming
paradigm, as we’ll will describe on Friday and next Monday.

• Unfortunately, JavaScript uses the same word to refer to any
collection of individual data items. In other programming
languages, this idea is often called a "structure," a "record," or
an "aggregate." We will use "aggregate" when we want to
restrict consideration to objects of this more primitive form.

Objects as Aggregates
• Even though modern programming practice tends to favor the

object-oriented model, it is still important to understand the
more traditional view of objects as data aggregates.

• Aggregates are used to represent situations in the real world
in which several independent pieces of data are all part of a
single unified structure. In contrast to an array, the data
elements in an aggregate are often of different types and are
identified by name rather than by a sequence number.

• The first example in the text imagines keeping track of the
data for the employees of Scrooge and Marley, the company
from Charles Dickens’s A Christmas Carol. Each employee
is identified by a name, a job title, and a salary. A diagram of
the two employees at the company appears on the next slide.

Employees at Scrooge and Marley

name
Ebenezer Scrooge

title
CEO

salary
£1000

name
Bob Cratchit

title
clerk

salary
£25

Using JSON to Create Objects
• The easiest way to create new aggregates in JavaScript is to

use JavaScript Object Notation or JSON.

• In JSON, you specify an object simply by listing its contents
as a sequence of name-value pairs. The name and the value
are separated by a colon, the name-value pairs are separated
by commas, and the entire list is enclosed in curly braces.

• The following declarations create variables named ceo and
clerk for the employees diagrammed on the previous slide:

let ceo = {
name: "Ebenezer Scrooge",
title: "CEO",
salary: 1000

};

let clerk = {
name: "Bob Cratchit",
title: "clerk",
salary: 25

};

Selecting Fields from an Object
• Given an object, you can select an individual field by writing

an expression denoting the object and then following it by a
dot and the name of the field. For example, the expression
ceo.name returns the string "Ebenezer Scrooge"; similarly,
clerk.salary returns the number 25.

• Fields are assignable. For example, the statement
clerk.salary *= 2;

doubles poor Mr. Cratchit’s salary.

• Fields selection can also be expressed using square brackets
enclosing the name of the field expressed as a string, as in
ceo["name"]. This style is necessary if the name of the field
is not a simple identifier or, more likely, if the name is
computed by the program.

Arrays of Objects
• Since arrays can contain values of any type, the elements of

an array can be JavaScript objects. For example, the
employees at Scrooge and Marley can be initialized like this:

let employees = [
{ name: "Ebenezer Scrooge", title: "CEO", salary: 1000 },
{ name: "Bob Cratchit", title: "clerk", salary: 25}

];

• The following function prints the payroll for the employee
array supplied as an argument:
function printPayroll(employees) {

for (let i = 0; i < employees.length; i++) {
let emp = employees[i];
console.log(emp.name + " (" + emp.title + ") £" +

emp.salary);
}

}

Exercise: Hogwarts Student Data
• How would you design an aggregate for keeping track of the

following information about a student at Hogwarts:
– The name of the student
– The student’s house
– The student’s year at Hogwarts
– A flag indicating if the student has passed the O.W.L. exam

• How would you code this data for the following students:
– Hermione Granger, Gryffindor, 5th year, passed O.W.L. exam
– Luna Lovegood, Ravenclaw, 4th year, not yet passed O.W.L.
– Vincent Crabbe, Slytherin, 5th year, failed O.W.L exam

• Just for fun, think about other data values that might be useful
about a Hogwarts student and what types you would use to
represent these values.

Representing Points as Aggregates
• One data aggregate that comes in handy in graphics captures

the abstract notion of a point in two-dimensional space, which
is composed of an x and a y component.

• Points can be created in JavaScript simply by writing their
JSON notation, as in the following examples, which are shown
along with their positions in the graphics window.

Graphics Window

• The x and y components of p1 can be selected as p1.x and
p1.y, respectively.

let p2 = { x: 90, y: 70 };

let p1 = { x: 0, y: 0 };

Factory Functions
• Although JSON notation is compact and easy to read, it is

often useful to define a function that creates a JavaScript
object. Such functions are called factories and are written in
the book using an uppercase initial letter.

• The following function creates a point-valued object for which
the coordinate values default to the (0, 0) point at the origin:

function Point(x, y) {
if (x === undefined) {

x = 0;
y = 0;

}
return { x: x, y: y };

}

This x is a name. This x is a value.

Points and Graphics
• Points turn up often in graphical applications, particularly

when you need to store the points in an array or an object.
• As an aesthetically pleasing illustration of the use of points and

the possibility of creating dynamic pictures using nothing but
straight lines, the text presents the program YarnPattern.js,
which simulates the following process:
– Place a set of pegs at regular intervals around a rectangular border.
– Tie a piece of colored yarn around the peg in the upper left corner.
– Loop that yarn around the peg a certain distance DELTA ahead.
– Continue moving forward DELTA pegs until you close the loop.

A Larger Sample Run
YarnPattern

/*
* Creates a pattern that simulates winding a piece of yarn
* around an array of pegs at the edges of the graphics window.
*/

function YarnPattern() {
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
let pegs = createPegArray(GWINDOW_WIDTH, GWINDOW_HEIGHT,

N_ACROSS, N_DOWN);
let thisPeg = 0;
let nextPeg = -1;
while (thisPeg !== 0 || nextPeg === -1) {

nextPeg = (thisPeg + DELTA) % pegs.length;
let p0 = pegs[thisPeg];
let p1 = pegs[nextPeg];
let line = GLine(p0.x, p0.y, p1.x, p1.y);
line.setColor("Magenta");
gw.add(line);
thisPeg = nextPeg;

}
}

The YarnPattern Program

page 1 of 3

/*
* Creates a pattern that simulates winding a piece of yarn
* around an array of pegs at the edges of the graphics window.
*/

function YarnPattern() {
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
let pegs = createPegArray(GWINDOW_WIDTH, GWINDOW_HEIGHT,

N_ACROSS, N_DOWN);
let thisPeg = 0;
let nextPeg = -1;
while (thisPeg !== 0 || nextPeg === -1) {

nextPeg = (thisPeg + DELTA) % pegs.length;
let p0 = pegs[thisPeg];
let p1 = pegs[nextPeg];
let line = GLine(p0.x, p0.y, p1.x, p1.y);
line.setColor("Magenta");
gw.add(line);
thisPeg = nextPeg;

}
}

/*
* Creates an array of pegs around the perimeter of a rectangle
* with the specified width and height. The number of pegs in
* each dimension is specified by nAcross and nDown.
*/

function createPegArray(width, height, nAcross, nDown) {
let dx = width / nAcross;
let dy = height / nDown;
let pegs = [];
for (let i = 0; i < nAcross; i++) {

pegs.push(Point(i * dx, 0));
}
for (let i = 0; i < nDown; i++) {

pegs.push(Point(nAcross * dx, i * dy));
}
for (let i = nAcross; i > 0; i--) {

pegs.push(Point(i * dx, nDown * dy));
}
for (let i = nDown; i > 0; i--) {

pegs.push(Point(0, i * dy));
}
return pegs;

}

The YarnPattern Program

page 2 of 3

/*
* Creates an array of pegs around the perimeter of a rectangle
* with the specified width and height. The number of pegs in
* each dimension is specified by nAcross and nDown.
*/

function createPegArray(width, height, nAcross, nDown) {
let dx = width / nAcross;
let dy = height / nDown;
let pegs = [];
for (let i = 0; i < nAcross; i++) {

pegs.push(Point(i * dx, 0));
}
for (let i = 0; i < nDown; i++) {

pegs.push(Point(nAcross * dx, i * dy));
}
for (let i = nAcross; i > 0; i--) {

pegs.push(Point(i * dx, nDown * dy));
}
for (let i = nDown; i > 0; i--) {

pegs.push(Point(0, i * dy));
}
return pegs;

}

/*
* Creates a new Point object. If this function is called with
* no arguments, it creates a Point object at the origin.
*/

function Point(x, y) {
if (x === undefined) {

x = 0;
y = 0;

}
return { x: x, y: y };

}

/* Constants */

const GWINDOW_WIDTH = 1000;
const GWINDOW_HEIGHT = 625;
const N_ACROSS = 80;
const N_DOWN = 50;
const DELTA = 113;

The YarnPattern Program

page 3 of 3

The End

