
Strings in JavaScript

Jerry Cain
CS 106AJ

October 22, 2018
slides courtesy of Eric Roberts

Once upon a time . . .

Early Character Encodings
• The idea of using codes to represent letters dates from before the

time of Herman Hollerith, as described in Chapter 7.
• Most of you are familiar with the work of Samuel F. B. Morse,

inventor of the telegraph, who devised a code consisting of dots
and dashes. This scheme made it easier to transmit messages
and paved the way for later developments in communication.

Samuel Morse (1791-1872) Alphabetic Characters in Morse Code

The Victorian Internet
What you probably don’t know is
that the invention of the telegraph
also gave rise to many of the social
phenomena we tend to associate with
the modern Internet, including chat
rooms, online romances, hackers,
and entrepreneurs—all of which are
described in Tom Standage’s 1998
book, The Victorian Internet.

Strings in JavaScript

Review: Strings as an Abstract Idea
• Characters are most often used in programming when they are

combined to form collections of consecutive characters called
strings.

• As you will discover when you have a chance to look more
closely at the internal structure of memory, strings are stored
internally as a sequence of characters at consecutive memory
addresses.

• The internal representation, however, is really just an
implementation detail. For most applications, it is best to
think of a string as an abstract conceptual unit rather than as
the characters it contains.

• JavaScript emphasizes the abstract view by defining a built-in
string type that defines high-level operations on string values.

Using Methods in the String Class
• JavaScript defines many useful methods that operate on

strings. Before trying to use those methods individually, it is
important to understand how those methods work at a more
general level.

• Because strings are objects, JavaScript uses the receiver
syntax to call string methods. Thus, if str is a string, you
would invoke the name method using str.name(arguments).

• None of the methods in JavaScript’s String class change the
value of the string used as the receiver. What happens instead
is that these methods return a new string on which the desired
changes have been performed.

• Classes that prohibit clients from changing an object’s state
are said to be immutable. Immutable types have many
advantages and play an important role in programming.

Selecting Characters from a String
• Conceptually, a string is an ordered collection of characters.

• In JavaScript, the character positions in a string are identified
by an index that begins at 0 and extends up to one less than
the length of the string. For example, the characters in the
string "hello, world" are arranged like this:

h
0

e
1

l
2

l
3

o
4

,
5 6

w
7

o
8

r
9

l
10

d
11

• You can obtain the number of characters by checking the
length property, as in str.length.

• You can select an individual character by calling charAt(k),
where k is the index of the desired character. The expression

returns the one-character string "h" that appears at index 0.
str.charAt(0);

Concatenation
• One of the most useful operations available for strings is
concatenation, which consists of combining two strings end
to end with no intervening characters.

• As you know from earlier in the quarter, concatenation is built
into JavaScript in the form of the + operator.

• It is also important to recall that JavaScript interprets the +
operator as concatenation only if at least one of the operands
is a string. If both operands are numbers, the + operator
signifies addition.

Extracting Substrings
• The substring method makes it possible to extract a piece of

a larger string by providing index numbers that determine the
extent of the substring.

where p1 is the first index position in the desired substring
and p2 is the index position immediately following the last
position in the substring.

• The general form of the substring call is

str.substring(p1, p2);

• As an example, if you wanted to select the substring "ell"
from a string variable str containing "hello, world" you
would make the following call:

str.substring(1, 4);

Comparing Strings
• JavaScript allows you to call the standard relational operators

to compare the values of two strings in a natural way. For
example, if s1 and s2 are strings, the expression

is true if the strings s1 and s2 contain the same characters.

s1 === s2

• String comparisons involving the operators <, <=, >, and >=
are implemented in a fashion similar to traditional alphabetic
ordering: if the first characters match, the comparison
operator checks the second characters, and so on.

• Characters are compared numerically using their Unicode
values. For example, "cat" > "CAT" because the character
code for "c" (99) is greater than the code for "C" (67). This
style of comparison is called lexicographic ordering.

Searching in a String
• The indexOf method takes a string and returns the index

within the receiver at which the first instance of that string
begins. If the string is not found, indexOf returns -1. For
example, if str contains the string "hello, world":

str.indexOf("h") returns 0
str.indexOf("o") returns 4
str.indexOf("ell") returns 1
str.indexOf("x") returns -1

• The indexOf method takes an optional second argument that
indicates the starting position for the search. Thus:

str.indexOf("o", 5) returns 8

• The lastIndexOf method works similarly except that it
searches backward from the end of the receiving string.

Other Methods in the String Class
String.fromCharCode(code)

Returns the one-character string whose Unicode value is code.
charCodeAt(index)

Returns the Unicode value of the character at the specified index.

startsWith(prefix)
Returns true if this string starts with prefix.

endsWith(suffix)
Returns true if this string ends with suffix.

trim()
Returns a copy of this string with leading and trailing spaces removed.

toLowerCase()
Returns a copy of this string converted to lower case.

toUpperCase()
Returns a copy of this string converted to upper case.

Exercise: Implementing endsWith
• The startsWith and endsWith methods did not exist in early

versions of JavaScript. The text includes an implementation
of startsWith written as a client function. How would you
do the same for endsWith?

Simple String Idioms
When you work with strings, there are two idiomatic patterns that
are particularly important:

for (let i = 0; i < str.length; i++) {
let ch = str.charAt(i);
. . . code to process each character in turn . . .

}

Iterating through the characters in a string.1.

let result = "";
for (whatever limits are appropriate to the application) {

. . . code to determine the next character to be added . . .
result += ch;

}

Growing a new string character by character.2.

Reversing a String

> reverse("stressed")

str result i
"stressed" "" 7"d" 6"de" 5"des" 4"dess" 3"desse" 2"desser" 1"dessert" 0"desserts" -1

desserts
>

Exercise: Implementing toUpperCase
• Suppose that the toUpperCase method did not exist. How

would you implement a toUpperCase function that returns
the same result?

The GLabel Class
You can display a string in the graphics window using the GLabel
class, as illustrated by the following function that displays the
string "hello, world" on the graphics window:

HelloWorld

hello, world

function HelloWorld() {
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
let label = GLabel("hello, world", 100, 75);
label.setFont("36px Helvetica");
label.setColor("Red");
gw.add(label);

}

Operations on the GLabel Class
Function to create a GLabel
GLabel(text, x, y)

Creates a label containing the specified text that begins at the point (x, y).

Methods specific to the GLabel class
label.setFont(font)

Sets the font used to display the label as specified by the font string.

The font is specified as a CSS fragment, the details of which are
described in the course reader, pp. 129-131.

Examples of legal font strings:
• "italic 36px Helvetica"
• "24px 'Times New Roman'"
• "bold 14px Courier,'Courier New',Monaco"
• "oblique bold 44px 'Lucida Blackletter',serif"

The Geometry of the GLabel Class
• The GLabel class relies on a set of geometrical concepts that

are derived from classical typesetting:
– The baseline is the imaginary line on which the characters rest.
– The origin is the point on the baseline at which the label begins.
– The height of the font is the distance between successive baselines.
– The ascent is the distance characters rise above the baseline.
– The descent is the distance characters drop below the baseline.

• You can use the getHeight, getAscent, and getDescent
methods to determine the corresponding property of the font.
You can use the getWidth method to determine the width of
the entire label, which depends on both the font and the text.

QuickBrownFox

The quick brown fox jumps
over the lazy dog. baseline

origin

height

ascent

descent

The End

