
Graphical Structures

Jerry Cain
CS 106AJ

October 17, 2018
slides courtesy of Eric Roberts

The GArc Class
• The GArc class represents an arc formed by taking a section

from the perimeter of an oval.
• Conceptually, the steps necessary to define an arc are:

– Specify the coordinates and size of the bounding rectangle.
– Specify the start angle, which is the angle at which the arc begins.
– Specify the sweep angle, which indicates how far the arc extends.

• In keeping with the graphics model,
angles are measured in degrees starting
at the +x axis (the 3:00 o’clock position)
and increasing counterclockwise.

• Negative values for the start and sweep
angles signify a clockwise direction.

• The geometry used by the GArc class is
shown in the diagram on the right.

Exercise: GArc Geometry

GArcExamples

Suppose that the variables cx and cy contain the coordinates of
the center of the window and that the variable d is 0.8 times the
screen height. Sketch the arcs that result from each of the
following code sequences:
let a1 = GArc(d, d, 0, 90);
gw.add(a1, cx - d / 2, cy - d / 2);

let a2 = GArc(d, d, 45, 270);
gw.add(a2, cx - d / 2, cy - d / 2);

GArcExamples

GArcExamples

let a3 = GArc(d, d, -90, 45);
gw.add(a3, cx - d / 2, cy - d / 2);

GArcExamples

let a4 = GArc(d, d, 0, -180);
gw.add(a4, cx - d / 2, cy - d / 2);

Filled Arcs
• The GArc class implements the functions setFilled and

setFilledColor.
• A filled GArc is displayed as the pie-shaped wedge formed by

the center and the endpoints of the arc, as follows:
function FilledEllipticalArc() {

let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
let arc = GArc(0, 0, gw.getWidth(), gw.getHeight(),

0, 90);
arc.setFilled(true);
gw.add(arc);

}

FilledEllipticalArc

Additional Methods for GArc
setStartAngle(start)
getStartAngle()

Sets the start angle for the arc
Returns the start angle for the arc

setSweepAngle(sweep)
getSweepAngle()

Sets the sweep angle for the arc
Returns the sweep angle

setFrameRectangle(x, y, width, height) Resets the bounds for the frame

• These methods allow you to animate the appearance of an arc.
• The setStartAngle and setSweepAngle methods make it

possible to change the starting position and the extent of the
arc dynamically.

• The setFrameRectangle method changes the bounds of the
rectangle circumscribing the oval from which the arc is taken.

Exercise: PacMan

PacMan

• Write a program that uses the GArc class to display a PacMan
figure at the left edge of the graphics window.

• Add the necessary timer animation so that PacMan moves to
the right edge of the window. As it moves, your program
should change the start and sweep angles of the arc so that the
mouth appears to open and close.

Questions about the PacMan Problem
• We’re going to divide into four groups and spend the next five

minutes discussing important questions you would need to
answer while solving the PacMan problem. Each group will
discuss one of the following four questions:
1. How would you create the initial PacMan object at the left of

the window?

2. What needs to happen on each time step?

3. How do you get the program to stop?

4. How would you design milestones that would allow you to test
the program in pieces?

The GPolygon Class
• The GPolygon class is used to represent graphical objects

bound by line segments. In mathematics, such figures are
called polygons and consist of a set of vertices connected by
edges. The following figures are examples of polygons:

diamond regular hexagon five-pointed star

• Unlike the other shape classes, that location of a polygon is
not fixed at the upper left corner. What you do instead is pick
a reference point that is convenient for that particular shape
and then position the vertices relative to that reference point.

• The most convenient reference point is usually the geometric
center of the object.

Constructing a GPolygon Object
• The GPolygon function creates an empty polygon. Once you

have the empty polygon, you then add each vertex to the
polygon, one at a time, until the entire polygon is complete.

• The most straightforward way to create a GPolygon is to call
the method addVertex(x, y), which adds a new vertex to the
polygon. The x and y values are measured relative to the
reference point for the polygon rather than the origin.

• When you start to build up the polygon, it always makes
sense to use addVertex(x, y) to add the first vertex. Once
you have added the first vertex, you can call any of the
following methods to add the remaining ones:
– addVertex(x, y) adds a new vertex relative to the reference point
– addEdge(dx, dy) adds a new vertex relative to the preceding one
– addPolarEdge(r, theta) adds a new vertex using polar coordinates

Using addVertex and addEdge
• The addVertex and addEdge methods each add one new

vertex to a GPolygon object. The only difference is in how
you specify the coordinates. The addVertex method uses
coordinates relative to the reference point, while the addEdge
method indicates displacements from the previous vertex.

• Your decision about which of these methods to use is based
on what information you have readily at hand. If you can
easily calculate the coordinates of the vertices, addVertex is
probably the right choice. If, however, it is easier to describe
each edge, addEdge is probably a better strategy.

• No matter which of these methods you use, the GPolygon
class closes the polygon before displaying it by adding an
edge from the last vertex back to the first one, if necessary.

Drawing a Diamond (addVertex)

gw

diamond

width height

diamond

40 70

Drawing a Diamond (addEdge)

gw

diamond

width height

diamond

40 70

Using addPolarEdge
• In many cases, you can determine the length and direction of

a polygon edge more easily than you can compute its x and y
coordinates. In such situations, the best strategy for building
up the polygon outline is to call addPolarEdge(r, theta),
which adds an edge of length r at an angle that extends theta
degrees counterclockwise from the +x axis, as illustrated by
the following diagram:

• The name of the method reflects the fact that addPolarEdge
uses what mathematicians call polar coordinates.

r

theta

Drawing a Hexagon

gw

hexagon

side i angle

hex

30 600 01 -602 -1203 -1804 -2405 -3006

Creating Compound Objects
• The GCompound class in the graphics library makes it possible

to combine several graphical objects so that the resulting
structure behaves as a single GObject.

• The easiest way to think about the GCompound class is as a
combination of a GWindow and a GObject. A GCompound is
like a GWindow in that you can add objects to it, but it is also
like a GObject in that you can add it to the graphics window.

• As was true in the case of the GPolygon class, a GCompound
object has its own coordinate system that is expressed relative
to a reference point. When you add new objects to the
GCompound, you use the local coordinate system based on the
reference point. When you add the GCompound to the graphics
window, all you have to do is set the location of the reference
point; the individual components will automatically appear in
the right locations relative to that point.

Using the GCompound Class

DrawCrossedBox

gw

box

w h

box

200 100
w h

box

The End

