
Mechanics of Functions

Jerry Cain
CS 106AJ

October 10, 2018
slides courtesy of Eric Roberts

Mechanics of the Function-Calling Process
When you invoke a function, the following actions occur:

JavaScript evaluates the arguments in the context of the caller.1.
JavaScript copies each argument value into the corresponding
parameter variable, which is allocated in a newly assigned region of
memory called a stack frame. This assignment follows the order in
which the arguments appear: the first argument is copied into the
first parameter variable, and so on. If there are too many
arguments, the extras are ignored. If there are too few, the extra
parameters are initialized to undefined.

2.

JavaScript then evaluates the statements in the function body, using
the new stack frame to look up the values of local variables.

3.

When JavaScript encounters a return statement, it computes the
return value and substitutes that value in place of the call.

4.

JavaScript then removes the stack frame for the called function and
returns to the caller, continuing from where it left off.

5.

The Combinations Function
• To illustrate function calls, the text uses a function C(n,k) that

computes the combinations function, which is the number of
ways one can select k elements from a set of n objects.

• Suppose, for example, that you have a set of five coins: a
penny, a nickel, a dime, a quarter, and a dollar:

How many ways are there to select two coins?
penny + nickel
penny + dime
penny + quarter
penny + dollar

nickel + dime
nickel + quarter
nickel + dollar

dime + quarter
dime + dollar

quarter + dollar

for a total of 10 ways.

Combinations and Factorials
• Fortunately, mathematics provides an easier way to compute

the combinations function than by counting all the ways. The
value of the combinations function is given by the formula

C(n,k) = n!
k! (n–k)!x

• Given that you already have a fact function, is easy to turn
this formula directly into a function, as follows:

function combinations(n, k) {
return fact(n) / (fact(k) * fact(n - k));

}

• The next slide simulates the operation of combinations and
fact in the context of a simple run function.

Tracing the combinations Function

> combinations(6, 2)

n k
6 2n result i

6 1 11 22 36 424 5120 6720 7

720

n result i
2 1 11 22 3

2

n result i
4 1 11 22 36 424 5

24

15

15
>

n k

Exercise: Generating Prime Factorizations
• A more computationally intense problem is to generate the

prime factorization of a positive integer n.

• An integer is prime if it’s greater than 1 and has no positive
integer divisors other than 1 and itself.
ü 5 is prime: it’s divisible only by 1 and 5.

ü 6 is not prime: it’s divisible by 1, 2, 3, and itself.
• Some prime factorizations:

PrimeFactorizations.js
Some thought questions and exercises:

• My solution relies on a single Boolean called first. What problem is first
solving for us?

• During our trace of constructFactorization(180), factor assumed
the values of 2, 3, 4, and 5. 2, 3, and 5 are prime numbers and therefore qualified
to appear in a factorization? How does the implementation guarantee 4 will never
make an appearance in the returned factorization?

• What is returned by constructFactorization(1)? How could you have
changed the implementation to return "1 = 1" as a special case return value?

• Trace through the execution of constructFactorization(363) as we did
for constructFactorization(180).

• Our implementation relies on a parameter named n to accept a value from the
caller, and then proceeds to destroy n by repeatedly dividing it down to 1. Does
this destruction of n confuse PrimeFactorizations’s for loop? Note that
its counting variable is also named n.

The End

