
Functions and Libraries

Jerry Cain
CS 106AJ

October 8, 2018
slides courtesy of Eric Roberts

Once upon a time . . .

Computational Randomness is Hard
The best known academic computer scientist at
Stanford—and probably in the world—is Don
Knuth, who has now been retired for many years.
Over his professional life, he has won most of the
major awards in the field, including the 1974
Turing Award.

In 1969, Don published the first three volumes of
his encyclopedic reference on computing, The Art
of Computer Programming. The second volume is
devoted to seminumerical algorithms and includes
a 160-page chapter on random numbers whose
primary message is that “it is not easy to invent a
fool-proof random-number generator.”

Celebrating Don’s 10000002
th Birthday

In January 2002, the computer science department
organized a surprise birthday conference in honor
of Don Knuth’s 64th birthday (which is a nice
round number in computational terms).

One of the speakers at the conference was Persi
Diaconis, Professor of both Mathematics and
Statistics, who spent the first decade of his
professional life as a stage magician.

At the conference, Persi described what happened
when he was contacted by a Nevada casino to
undertake a statistical analysis of a new shuffling
machine . . .

Simulating a Shuffling Machine
The machine in question
works by distributing a
deck of cards into a set of
eight bins.

In phase 1, the machine
moves each card in turn to
a randomly chosen bin.

If cards already exist in a
bin, the machine randomly
puts the new card either on
the top or the bottom.

In phase 2, the contents of
the bins are returned to the
deck in a random order.

Question: Is this a Good Machine?
• Thought experiment: What are the odds that the bottom card

(the white card in the simulation) becomes the top card after
the shuffling machine runs through a single cycle?

• Answer: Because the bottom card is sorted last into the bins,
it will be the top card in its bin half the time. If that bin is
chosen last in Phase 2 (which happens one time in eight), the
bottom card will end up on the top. This analysis suggests
that the odds of having the bottom card become the top card
are 1 in 16, which is considerably higher than 1 in 52.

• Running a simulation of this machine verifies this analysis
experimentally. After 52,000 trials:
– The bottom card became the top card 3326 times.
– The bottom card became the second card only 46 times.

Functions and Libraries

A Quick Review of Functions
• You have been working with functions ever since you wrote

your first JavaScript program in Chapter 2.

• At the most basic level, a function is a sequence of statements
that has been collected together and given a name. The name
makes it possible to execute the statements much more easily;
instead of copying out the entire list of statements, you can
just provide the function name.

• The following terms are useful when working with functions:
– Invoking a function by name is known as calling that function.
– The caller passes information to a function using arguments.
– When a function completes its operation, it returns to its caller.
– A function gives information to the caller by returning a result.

Review: Syntax of Functions
• The general form of a function definition is

function name(parameter list) {
statements in the function body

}

where name is the name of the function, and parameter list is
a list of variables used to hold the values of each argument.

• You can return a value from a function by including one or
more return statements, which are usually written as

return expression;

where expression is an expression that specifies the value you
want to return.

Nonnumeric Functions
• Although functions return a single value, that value can be of

any type.

• Even without learning the full range of string operations
covered in Chapter 7, you can already write string functions
that depend only on concatenation, such as the following
function that concatenates together n copies of the string str:

function concatNCopies(n, str) {
let result = "";
for (let i = 0; i < n; i++) {

result += str;
}
return result;

}

Exercise: Console Pyramid
• Write a program that uses the concatNCopies function to

display a pyramid on the console in which the bricks are
represented by the letter x. The number of levels in the
pyramid should be defined as the constant N_LEVELS.

• For example, if N_LEVELS is 10, the console output should
look like this:

ConsolePyramid

x
xxx

xxxxx
xxxxxxx

xxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

Predicate Functions
• Functions that return Boolean values play a central role in

programming and are called predicate functions. As an
example, the following function returns true if the first
argument is divisible by the second, and false otherwise:

function isDivisibleBy(x, y) {
return x % y === 0;

}

• Once you have defined a predicate function, you can use it
any conditional expression. For example, you can print the
integers between 1 and 100 that are divisible by 7 as follows:

for (let i = 1; i <= 100; i++) {
if (isDivisibleBy(i, 7)) {

println(i);
}

}

Using Predicate Functions Effectively
• New programmers often seem uncomfortable with Boolean

values and end up writing ungainly code. For example, a
beginner might write isDivisibleBy like this:

function isDivisibleBy(x, y) {
if (x % y === 0) {

return true;
} else {

return false;
}

}

• A similar problem occurs when novices explicitly check to
see whether a predicate function returns true. You should be
careful to avoid such redundant tests in your own programs.

While this code is not technically incorrect, it is inelegant
enough to warrant the bug symbol.

Functions Returning Graphical Objects
• When you are working with graphical programs, it is often

useful to write functions that return graphical objects, as in
this function from Chapter 3 that creates a filled circle:

function createFilledCircle(x, y, r, color) {
let circle = GOval(x - r, y - r, 2 * r, 2 * r);
circle.setColor(color);
circle.setFilled(true);
return circle;

}

• Calling this function creates a circular GOval object of radius
r, centered at (x, y) and filled with the specified color.

• You can use createFilledCircle to create as many circles
as you need. You can create and display a filled circle in a
single line, instead of the four lines you need without it.

The Purpose of Parameters

• As a general rule, functions perform a service for their callers.
In order to do so, the function needs to know any details that
are necessary to carry out the requested task.

• Imagine that you were working as an low-level animator at
Disney Studies in the days before computerized animation
and that one of the senior designers asked you to draw a filled
circle. What would you need to know?

• At a minimum, you would need to know where the circle
should be placed in the frame, how big to make it, and what
color it should be. Those values are precisely the information
conveyed in the parameters.

“All right, Mr. Wiseguy,” she said, “you’re so clever,
you tell us what color it should be.”

Douglas Adams, The Restaurant
at the End of the Universe, 1980

—

Libraries
• To make programming easier, all modern languages include

collections of predefined functions. Those collections are
called libraries.

• For programming that involves mathematical calculations, the
most useful library is the Math library, which includes a
number of functions that will be familiar from high-school
mathematics (along with many that probably aren’t). A list of
the most important functions appears on the next slide.

• In JavaScript, each of the functions in the Math library begins
with the library name followed by a dot and then the name of
the function. For example, the function that calculates square
roots is named Math.sqrt.

• You call library functions just like any other function, so that
calling Math.sqrt(16) returns the value 4.

Useful Functions in the Math Library

Math.abs(x)
Math.max(x, y, . . .)
Math.min(x, y, . . .)
Math.round(x)
Math.floor(x)
Math.log(x)

Math.pow(x, y)
Math.sin(q)
Math.cos(q)
Math.sqrt(x)

Math.PI
Math.E

Math.exp(x)

The mathematical constant π
The mathematical constant e
The absolute value of x
The largest of the arguments
The smallest of the arguments
The closest integer to x
The largest integer not exceeding x
The natural logarithm of x
The inverse logarithm (e x)
The value x raised to the y power (x y)
The sine of q, measured in radians
The cosine of q, measured in radians
The square root of x

Math.random() A random value between 0 and 1

Libraries and Interfaces
• Modern programming depends on the use of libraries. When

you create a program, you write only a fraction of the code.

• Libraries can be viewed from two perspectives. Code that
uses a library is called a client. The code for the library itself
is called the implementation.

• The point at which the client and the implementation meet is
called the interface, which serves as both a barrier and a
communication channel:

interface

client implementation

Principles of Interface Design
• Unified. Every library should define a consistent abstraction

with a clear unifying theme. If a function does not fit within
that theme, it should not be part of the interface.

• Simple. The interface design should simplify things for the
client. To the extent that the implementation is itself complex,
the interface must seek to hide that complexity.

• Sufficient. For clients to adopt a library, it must provide
functions that meet their needs. If critical operations are
missing, clients may abandon it and develop their own tools.

• Flexible. A well-designed library should be general enough to
meet the needs of many different clients.

• Stable. The functions defined in a class exported by a library
should maintain the same structure and effect, even as the
library evolves. Making changes in a library forces clients to
change their programs, which reduces its utility.

What Clients Want in a Random Library
• Selecting a random integer in a specified range. If you want

to simulate the process of rolling a standard six-sided die, you
need to choose a random integer between 1 and 6.

• Choosing a random real number in a specified range. If you
want to position an object at a random point in space, you
need to choose random x and y coordinates within whatever
limits are appropriate to the application.

• Simulating a random event with a specific probability. If you
want to simulate flipping a coin, you need to generate the
value heads with probability 0.5, which corresponds to 50
percent of the time.

• Picking a random color. In certain graphical applications, it
is useful to choose a color at random to create unpredictable
patterns on the screen.

/*
* File: RandomLib.js
* ------------------
* This file contains a simple library of functions to
* generate random integers, reals, booleans, and colors.
*/

/*
* Returns a random integer in the range low to high,
* inclusive.
*/

function randomInteger(low, high) . . .
/*
* Returns a random real number in the half-open
* interval [low, high).
*/

function randomReal(low, high) . . .

/*
* Returns true with probability p. If p is missing,

The Client View of the Random Library

Exercises: Generating Random Values
How would you go about solving each of the following problems?

let total = randomInteger(2, 12);

This declaration makes 2 come up as often as 7.

1. Set the variable total to the sum of two six-sided dice.

let d1 = randomInteger(1, 6);
let d2 = randomInteger(1, 6);
let total = d1 + d2;

2. Flip a weighted coin that comes up heads 60% of the time.

let flip = randomChance(0.6) ? "Heads" : "Tails";

3. Change the fill color of rect to some randomly chosen color.

rect.setFillColor(randomColor());

RandomLib.js: randomInteger

Example: randomInteger(1, 6)
1. Calling Math.random() returns a value in the half-open interval [0, 1).

2. Multiplying by (high - low + 1) gives a value in the interval [0, 6).

3. Calling Math.floor truncates to an integer.

4. Adding low gives an integer between 1 and 6.

0 1

0 1 2 3 4 5 6

0 1 2 3 4 5 6

1 2 3 4 5 6

RandomLib.js: randomReal

Example: randomReal(-1, 1)
1. Calling Math.random() returns a value in the half-open interval [0, 1).

2. Multiplying by (high - low) gives a value in the interval [0, 2).

3. Adding low gives a value in the interval [–1, 1).

0 1

0 1 2

–1 0 1

RandomLib.js: randomChance

The first line establishes a default value of 0.5 for p.
Example: randomChance(0.75)

1. Calling Math.random() returns a value in the interval [0, 1).

2. The interval between [0, 0.75) represents 75% of the length.
0 1

0 1

RandomLib.js: randomColor

Geometrical Approximation of Pi

(0, 1)

(1, 0)

Suppose you have a circular dartboard
mounted on a square background that
is two feet on each side.
If you randomly throw a series of darts
at the dartboard, some will land inside
the yellow circle and some in the gray
area outside it.
If you count both the number of darts
that fall inside the circle and the
number that fall anywhere inside the
square, the ratio of those numbers
should be proportional to the relative
area of the two figures.
Because the area of the circle is π and
that of the square is 4, the fraction that
falls inside the circle should approach

π
4

Running the Simulation

(0, 1)

(1, 0)

Let’s give it a try.

The first dart lands inside the circle, so
the first approximation is that π ≈ 4.

The second dart also lands inside, so
the second approximation is still π ≈ 4.

The third dart is outside, which gives a
new approximation of π ≈ 2.6667.

Throwing ten darts gives a better value
of π ≈ 3.2.

Throwing 1000 darts gives π ≈ 3.18.

Throwing 2000 gives π ≈ 3.15.
inside total

0 01 12 22 38 10795 10001575 2000

Exercise: Write MonteCarloPi
Write a console program that implements the simulation described
in the preceding slides. Your program should use a named
constant to specify the number of darts thrown in the course of the
simulation.

MonteCarloPi

One possible sample run of your program might look like this:

Pi is approximately 3.164

Simulations that use random trials to derive approximate answers
to geometrical problems are called Monte Carlo techniques after
the capital city of Monaco.

The End

