
Control Statements

Jerry Cain
CS 106AJ

October 5, 2018
slides courtesy of Eric Roberts

Once upon a time . . .

Holism vs. Reductionism
In his Pulitzer-prizewinning book,
computer scientist Douglas Hofstadter
identifies two concepts—holism and
reductionism—that turn out to be
important as you begin to learn about
programming. Hofstadter explains these
concepts using a dialogue in the style of
Lewis Carroll:

I will be glad to indulge both of you, if you will first oblige me, by telling
me the meaning of these strange expressions, "holism" and
"reductionism".

Achilles:

Crab: Holism is the most natural thing in the world to grasp. It’s simply the
belief that "the whole is greater than the sum of its parts". No one in his
right mind could reject holism.

Anteater: Reductionism is the most natural thing in the world to grasp. It’s simply
the belief that “a whole can be understood completely if you understand
its parts, and the nature of their 'sum'". No one in her left brain could
reject reductionism.

Control Statements

Statement Types in JavaScript
• Statements in JavaScript fall into three basic types:

– Simple statements
– Compound statements
– Control statements

• Simple statements are typically assignments, function calls, or
applications of the ++ or -- operators. Simple statements are
always terminated with a semicolon.

• Compound statements (also called blocks) are sequences of
statements enclosed in curly braces.

• Control statements fall into two categories:
– Conditional statements that specify some kind of test
– Iterative statements that specify repetition

Boolean Expressions
• JavaScript defines two types of operators that work with

Boolean data: relational operators and logical operators.
• There are six relational operators that compare values of other

types and produce a true/false result:
=== Equals
< Less than

!== Not equals
<= Less than or equal to
>= Greater than or equal to> Greater than

For example, the expression n <= 10 has the value true if n is
less than or equal to 10 and the value false otherwise.

p || q means either p or q (or both)

• There are also three logical operators:

&& Logical AND

|| Logical OR

! Logical NOT

p && q means both p and q

!p means the opposite of p

Notes on the Boolean Operators
• Remember that JavaScript uses = for assignment. To test

whether two values are equal, you must use the === operator.

• The || operator means either or both, which is not always
clear in the English interpretation of or.

• It is not legal in JavaScript to use more than one relational
operator in a single comparison. To express the idea
embodied in the mathematical expression

0 ≤ x ≤ 9

0 <= x && x <= 9

you need to make both comparisons explicit, as in

• Be careful when you combine the ! operator with && and ||
because the interpretation often differs from informal English.

Short-Circuit Evaluation
• JavaScript evaluates the && and || operators using a strategy

called short-circuit mode in which it evaluates the right
operand only if it needs to do so.

• One of the advantages of short-circuit evaluation is that you
can use && and || to prevent errors. If n were 0 in the earlier
example, evaluating x % n would result in a division by zero.

• For example, if n is 0, the right operand of && in
n !== 0 && x % n === 0

is not evaluated at all because n !== 0 is false. Because the
expression

false && anything

is always false, the rest of the expression no longer matters.

The if Statement

if (condition) {
statements to be executed if the condition is true

}

• The simplest of the control statements is the if statement,
which occurs in two forms. You use the first when you need
to perform an operation only if a particular condition is true:

if (condition) {
statements to be executed if the condition is true

} else {
statements to be executed if the condition is false

}

• You use the second form whenever you need to choose
between two alternative paths, depending on whether the
condition is true or false:

Functions Involving Control Statements
• The body of a function can contain statements of any type,

including control statements. As an example, the following
function uses an if statement to find the larger of two values:

function max(x, y) {
if (x > y) {

return x;
} else {

return y;
}

}

• As this example makes clear, return statements can be used
at any point in the function and may appear more than once.

The switch Statement
The switch statement provides a convenient syntax for choosing
among a set of possible paths:

switch (expression) {
case v1:

statements to be executed if expression = v1

break;
case v2:

statements to be executed if expression = v2

break;
. . . more case clauses if needed . . .
default:

statements to be executed if no values match
break;

}

switch (expression) {
case v1:

statements to be executed if expression is equal to v1

break;
case v2:

statements to be executed if expression is equal to v2

break;
. . . more case clauses if needed . . .
default:

statements to be executed if no values match
break;

}

JavaScript evaluates statements in the case or default clause
until it reaches a break or a return statement.
If none of the values in the case clauses match the expression,
JavaScript evaluates the statements in the default clause.
JavaScript then looks for a case clause that matches expression.
If expression is equal to v2, JavaScript chooses the second clause.
When JavaScript executes a switch statement, it begins by
evaluating expression.
The switch statement provides a convenient syntax for choosing
among a set of possible paths:

Example of the switch Statement

function monthName(month) {
switch (month) {
case 1: return "January";
case 2: return "February";
case 3: return "March";
case 4: return "April";
case 5: return "May";
case 6: return "June";
case 7: return "July";
case 8: return "August";
case 9: return "September";
case 10: return "October";
case 11: return "November";
case 12: return "December";
default: return undefined;

}
}

The switch statement is useful when a function must choose
among several cases, as in the following example:

The while Statement

while (condition) {
statements to be repeated

}

while (condition) {
statements to be repeated

}

• The while statement is the simplest of JavaScript’s iterative
control statements and has the following form:

• When JavaScript encounters a while statement, it begins by
evaluating the condition in parentheses.

• If the value of condition is true, JavaScript executes the
statements in the body of the loop.

• At the end of each cycle, JavaScript reevaluates condition to
see whether its value has changed. If condition evaluates to
false, JavaScript exits from the loop and continues with the
statement following the end of the while body.

The digitSum Function

n result
1729n sum
1729 09172 1117 181 190

19

digitSum(1729) = 19

The for Statement

for (init ; test ; step) {
statements to be repeated

}

Evaluate init, which typically declares a control variable.1.
Evaluate test and exit from the loop if the value is false.2.
Execute the statements in the body of the loop.3.
Evaluate step, which usually updates the control variable.4.
Return to step 2 to begin the next loop cycle.5.

for (init ; test ; step) {
statements to be repeated

}

• The for statement in JavaScript is a powerful tool for
specifying the structure of a loop independently from the
operations the loop performs. The syntax looks like this:

• JavaScript evaluates a for statement as follows:

Exercise: Reading for Statements
Describe the effect of each of the following for statements:

This statement executes the loop body ten times, with the control
variable i taking on each successive value between 1 and 10.

for (let i = 1; i <= 10; i++)1.

This statement executes the loop body n times, with i counting from
0 to n-1. This version is the standard Repeat-n-Times idiom.

for (let i = 0; i < n; i++)2.

This statement counts backward from 99 to 1 by twos.

for (let n = 99; n >= 1; n -= 2)3.

This statement executes the loop body with the variable x taking on
successive powers of two from 1 up to 1024.

for (let x = 1; x <= 1024; x *= 2)4.

The factorial Function
• The factorial of a number n (which is usually written as n! in

mathematics) is defined to be the product of the integers from
1 up to n. Thus, 5! is equal to 120, which is 1 x2 x3 x4 x5.

function fact(n) {
let result = 1;
for (let i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

• The following function definition uses a for loop to compute
the factorial function:

The factorialTable Function

-> factorialTable(0, 7);

min max i
0 7 0n result i
0 1 1

1

0! = 1

1

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720

67n result i
7 1 11 22 36 424 5120 6720 75040 8

5040

7! = 5040

8

->

Comparing for and while

for (init ; test ; step) {
statements to be repeated

}

init;
while (test) {

statements to be repeated
step;

}

• The for statement

is functionally equivalent to the following code using while:

• The advantage of the for statement is that everything you
need to know to understand how many times the loop will run
is explicitly included in the header line.

The Checkerboard Program
const GWINDOW_WIDTH = 500; /* Width of the graphics window */
const GWINDOW_HEIGHT = 300; /* Height of the graphics window */
const N_COLUMNS = 8; /* Number of columns */
const N_ROWS = 8; /* Number of rows */
const SQUARE_SIZE = 35; /* Size of a square in pixels */

function Checkerboard() {
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
let x0 = (gw.getWidth() - N_COLUMNS * SQUARE_SIZE) / 2;
let y0 = (gw.getHeight() - N_ROWS * SQUARE_SIZE) / 2;

for (let i = 0; i < N_ROWS; i++) {
for (let j = 0; j < N_COLUMNS; j++) {

let x = x0 + j * SQUARE_SIZE;
let y = y0 + i * SQUARE_SIZE;
let sq = GRect(x, y, SQUARE_SIZE, SQUARE_SIZE);
let filled = (i + j) % 2 !== 0;
sq.setFilled(filled);
gw.add(sq);

}
}

}

The End

