Jerry Cain Handout #47S
CS 106AJ November 30, 2018

Answers to Practice Final #2

Review session: Saturday, December 8, 11:00a.m. —1:00p.m. (McCullough 115)
Scheduled final: Monday, December 10, 8:30-11:30a.m. (380-380C)
Problem 1—Short answer (10 points)

la) array

0 12 1 22 | 30 | 36 | 40 | 42 | 42 | 40 [36 | 30 | 22 | 12

0 1 2 3 4 5 6 7 8 9 10 11 12

The values for this problem (which was taken from an autumn quarter final and thus
came at the right season) indicate the total number of gifts in each category if you take
the words to “The Twelve Days of Christmas” literally. At the end of our true love’s
gift-giving spree, the total haul contains:

12 Partridges in pear trees 42 Swans-a-swimming
22 Turtle doves 40 Maids-a-milking

30 French hens 36 Ladies dancing

36 Calling birds 30 Lords-a-leaping

40 Gold rings 22 Pipers piping

42 Geese-a-laying 12 Drummers drumming

Charles M. Schulz offered a lovely rendition of this problem in 1963:

WELL, [T TOOK \ | | AL INALL, HE GAVE HER

ME SIX WEEKS, | | [TWENTY-TWO TURTLE DOVES,
BUT T FINALLY | | | THIRTY FRENCH HENS, THIRTY-61X
FIGURED IT CALLING BIRDS, FORTY GOLD RINGS,
FORTY-TIWO GEESE-A-LAYING....

FORTY-TWO SWANS-A- SWIMMING, | [WHEN T 6Row 0P
el e
. T
LADES DANCING TUENTY 0Lk [~ o~ AT 1T
A-LEAPING, TIELVE FIDDLERS FIDDLING,
AND TRI'R(DG% INPEARTREES!

/
{
voQ
a

1b) The issue here is figuring out exactly which variable or field each occurrence of x
refers to. The answer is the string consisting of """ + 10 + (11 * 6), or "1066".

Problem 2—Simple graphics (15 points)

/**

* Function: createButton

Creates a button (as a GCompound) to surround the specified

text, as specified in the problem statement. The reference

point of the button is the upper left corner of the smallest
rectangle circumscribing the button rendering.

*

* ok * ok

*/

function createButton (text) {
let button = GCompound() ;
let label = GLabel (text) ;
let radius = BUTTON HEIGHT/2;
let diameter = 2 * radius;
label.setFont (BUTTON_FONT) ;
button.add (GLine (radius, 0, radius + label.getWidth(), 0));
button.add (GArc(label.getWidth(), 0, diameter, diameter, 270, 180));
button.add (GLine (radius, diameter, radius + label.getWidth(), diameter));
button.add (GArc (0, 0, diameter, diameter, 90, 180));
button.add(label, radius, radius + BUTTON_LABEL DY) ;
return button;

Problem 3—Interactive graphics (20 points)

/* Derived constants */
const COIN_SEP = (GWINDOW_WIDTH - N_COINS * COIN_SIZE)/(N_COINS + 1);

/**
* Function: GraphicNim

* Defines the factory function that manages the entire
* simulation.
*/
function GraphicNim() ({
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
let coins = createCoinsArray (gw) ;
let clickAction = function (e) {
let coin = gw.getElementAt (e.getX(), e.get¥()):;
if (coin === null) return;
let pos = coins.indexOf (coin) ;
if (pos < coins.length - 3) return;
let count = coins.length - pos;
for (let i = pos; i < coins.length; i++) ({
gw.remove (coins[i]) ;
}
coins.splice(pos, count);
}i
gw.addEventListener ("click", clickAction);
}

/**
* Function: createCoinsArray

*

* createCoinsArray constructs and returns an array of N_COINS
* GOvals to represent each of the coins. Each coin is properly
* set in the supplied graphics window so that the array of
* coins is centered both vertically and horizontally.
*/
function createCoinsArray(gw) {
let coins = [];

let y = (gw.getHeight() - COIN_SIZE)/2;

for (let i = 0; i < N_COINS; i++) {
let x = COIN_SEP + i * (COIN_SIZE + COIN_SEP);
let coin = GOval(x, y, COIN SIZE, COIN_SIZE);
coin.setFilled(true) ;
coin.setFillColor (COIN_FILL COLOR) ;
gw.add (coin) ;
coins.push(coin) ;

}

return coins;

Problem 4—Strings (15 points)

/* Constants */
const TOC_LINE_LENGTH = 60;

/**
* Function: createTocEntry

*

* Returns a string of length TOC_LINE LENGTH that's prefixed by
* title, suffixed by the page number, and includes a leader in
* between the title and page number according to the rules laid
* out in the problem statement.
*/
function createTocEntry(title, page) ({

if (title.length % 2 === 0) title += " ";

let entry = title + " ";

page = " " + page; // convert page from number to string with padding

let gap = TOC_LINE LENGTH - entry.length - page.length;

let leader = "";

for (let i = 0; i < gap; i++) {

letch=1i %$2==02?2"." .. "nm",
leader += ch;

}

return entry + leader + page;

Problem 5—Arrays (10 points)

/**
* Function: rotateArray

*

Simple function that removes the first

k elements of an array and appends them to the
end, for any nonnegative value of k less than

or equal to the array length. The function
doesn't return anything, but rather relies on

the fact that the array is shared by reference and
thus updated in place.

* % ok kX ok *

*/
function rotateArray(array, k) ({
for (let i = 0; i < k; i++) {
array.push(array.shift());

}

Problem 6—Working with data structures (15 points)

/**
* Function: facebookRefund

*

Decides whether it was less expensive to purchase
Facebook stock at the time an order was placed or
the time the trade was executed and returns the
price difference between the two if the latter was
less expensive (and 0 otherwise).

* %k ok ok *

*/
function facebookRefund(nShares, date, timeOrdered, timeExecuted)
let priceOrdered = findSharePrice (date, timeOrdered) ;
let priceExecuted = findSharePrice(date, timeExecuted) ;
let refund = nShares * (priceOrdered - priceExecuted) ;
if (refund < 0) refund = 0;
return refund;

}

/**
* Function: findSharePrice

* Returns the price of Facebook stock at the specified
* time on the specified date. If no price information is
* available, an alert notifies the user and 0.0 is returned.
*/
function findSharePrice (date, time) {
for (let i = 0; i < FB_SHARE PRICE DATA.length; i++) {
let entry = FB_SHARE PRICE DATA[i];
if (entry.date === date && entry.time === time)
return entry.price;

}

alert("No record for " + date + " " + time + ".");
return 0.0;

Problem 7—Reading data structures from embedded XML (15 points)
/**
* Function: readLetters

*

Parses the XML content of the surrounding HTML file and returns
an array of aggregates, where each aggregate stores information
about a single exchange between two people, as specified in the
problem statement.

* ok * ok

*/
function readLetters() {
let exchangesXML = document.getElementById ("ExchangesData") ;
let letterElements = exchangesXML.getElementsByTagName ("letter") ;
let letters = [];
for (let i = 0; i < letterElements.length; i++) ({
letters.push (letterElementToAggregate (letterElements[i])) ;
}

return letters;

}

/**
* Function: letterElementToAggregate

* Parses the XML rooted at the provided letter element
* and returns an aggregate housing precisely the same
* information, as outlined in the problem statement.
*/
function letterElementToAggregate (element) {

let lines = element.innerHTML.split("\n");

let body = []:

for (let i = 0; i < lines.length; i++) {
let line = lines[i].trim();
if (line.length > 0) body.push(line) ;
}

let letter = {
to: element.getAttribute("to"),
from: element.getAttribute("from"),
date: element.getAttribute("date"),
body: body

};

return letter;

