
Jerry Cain Handout #46
CS 106AJ November 26, 2018

Practice Final Examination #2

Review session: Saturday, December 8, 11:00A.M. –1:00P.M. (McCullough 115)
Scheduled final: Monday, December 10, 8:30–11:30A.M. (380-380C)

Problem 1—Short answer (10 points)
1a) Suppose that the function accumulation is defined as follows:

function accumulation() {
 let array = [];
 for (let i = 0; i <= 12; i++) {
 array.push(0);
 for (let j = i; j > 0; j--) {
 array[j] += j;
 }
 }
 return array;
}

 If you look at the code, you’ll see that the function pushes a new value onto the array

for every value between 0 and 12, which means that the array will eventually contain
13 elements with indices ranging from 0 to 12. Work through the function carefully
and indicate the value of each of the elements in the array that accumulation
returns:

1b) What value is printed if you call the function confusion in the following code:

function confusion() {
 let obj = exasperating(6);
 console.log(obj.fn(10));
}

function exasperating(x) {
 return {
 fn: function(x) { return "" + x + this.x; },
 x: x * 11
 };
}

 – 2 –

Problem 2—Simple graphics (15 points)
If you want to build interactive programs, it is useful to have a library of interactive
elements such as buttons. When you are working with JavaScript on the web, you can
use the <button> HTML element, as I showed you in lecture. If instead you were asked
to create your own button graphical element, you would have to simulate buttons using
GCompound objects, just as you did in the Enigma assignment.

Your task in this problem is to write a function

function createButton(text)

that creates a GCompound object suitable for use as a button. For example, if you run the
program

function TestButton() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let button = createButton("Button");
 let x = (GWINDOW_WIDTH - button.getWidth()) / 2;
 let y = (GWINDOW_HEIGHT - button.getHeight()) / 2;
 gw.add(button, x, y);
}

it should display a button in the center of the graphics window that looks like this:

The GCompound that represents the button is composed of two semicircular GArcs that
form the ends of the button, two GLines that form the top and bottom edges of the button,
and a GLabel that shows the button label. The appearance of the button is controlled by
the following constants:

const BUTTON_HEIGHT = 22;
const BUTTON_FONT = "bold 16px Helvetica";
const BUTTON_LABEL_DY = 6;

The constant BUTTON_HEIGHT specifies the vertical extent of the button and also gives the
diameter of the semicircles. The width of the lines on the top and bottom are determined
by the size of the GLabel when rendered in BUTTON_FONT. Thus, if you create a button
by calling createButton("A Long Button Name"), the button would be longer in the
horizontal dimension so that the label fits inside the center of the button, with the
semicircles adding a bit of margin around the label, like this:

The constant BUTTON_LABEL_DY specifies the distance between the center line of the
button and baseline for the GLabel (using getAscent to implement the vertical centering
produces a button that looks terrible, so this constant is used to position the label at just
the right place for this point size).

 – 3 –

As you write your solution to this problem, you should keep the following points in mind:

• As the sample program indicates, the origin for the GCompound is the upper left corner

of the rectangle that encloses the button. Although it might simplify some programs to
have the origin be in the center, it probably makes more sense to define the geometry
for buttons so that it is consistent with the other graphical objects.

• For the purposes of this problem, you don’t have to worry about making the button
active. All you have to do is create the GCompound that displays it. The easiest way to
turn the button into an active element is to assign a clickAction method to the
GCompound, just as you did for the Enigma assignment, but you don’t need to worry
about that for this problem.

Problem 3—Interactive graphics (20 points)
Back before we had a graphics library, one of the early assignments in CS 106A was to
write a program that played a simple game called Nim. In the simplest version of the
game, two players start with a pile of 11 coins on the table between them. The players
then take turns removing 1, 2, or 3 coins from the pile. The player who is forced to take
the last coin loses. In the old days, the point of this assignment was to figure out a
strategy for winning the game. With our modern attachment to fancier user interfaces,
however, it is just as easy to focus on the problem of representing the game graphically
on the screen.

For this problem, your task is to create a program that implements the graphical
representation of the Nim game, which is easiest to do in two steps:

Step 1.
Write the code necessary to create a graphical display in which a line of coins is arranged
horizontally on the screen, like this:

In creating this display, you should make use of the following constants:

const GWINDOW_WIDTH = 496;
const GWINDOW_HEIGHT = 75;
const N_COINS = 11;
const COIN_SIZE = 32;
const COIN_FILL_COLOR = "LightGray";

It is useful to note that these constants specify the number of coins and the coin size, but
not the spacing. You should position the coins so that the space between each coin and
between the coins and the border of the window is divided equally after determining how
much space is left after displaying the coins. The line of coins should be centered both
horizontally and vertically in the window. Each coin should be outlined in black and use
the light-gray fill color specified by the constant COIN_FILL_COLOR.

 – 4 –

Step 2.
The second part of the problem consists of making it possible to take coins away. Add
the necessary code so that if the user clicks the mouse in one of the last three coins in the
row, those coins disappear. For example, if the user clicked on the third coin from the
right end, the program should respond by removing the last three coins from the display,
like this:

If the user then clicked on the rightmost coin, only that coin should go away:

If the mouse click does not occur inside a coin or if the coin is not one of the last three in
the row, that click should simply be ignored.

In order to solve this problem, you will need to store the GOval objects in an array so that
you can keep track of their order. When a mouse click occurs, your program needs to
find the object at that mouse location (if any) and see whether it is one of the last three
elements in the array. If so, your program should remove that element and any following
elements from both the list and the window.

Problem 4—Strings (15 points)
The table of contents for a book typically consists of a list of chapter titles along the left
margin of a page and the corresponding page numbers along the right. To make it easier
for your eye to match up the chapter and page, the usual approach is to tie the two
visually with a line of dots called a leader. Using this style, the table of contents for this
quarter's CS106AJ reader might look like this:

 1. A Gentle Introduction 1
 2. Introducing JavaScript 39
 3. Running Programs in the Browser 63
 4. Control Statements 103
 5. Functions . 143
 6. Writing Interactive Programs 181
 7. Strings . 219
 8. Arrays . 255
 9. Objects . 295

Write a function

function createTocEntry(title, page)

 – 5 –

that takes a chapter title (which includes the chapter number in these examples) and the
page number on which that chapter begins. Your function should return a string
formatted as an entry for the table of contents. Thus, if you were to call

createTocEntry("7. Strings", 219)

the function should return the following string:

"7. Strings . 219"

In generating this string, your function should adhere to the following guidelines:

• The strings returned by createTocEntry should all have the same length, which is

given by the constant TOC_LINE_LENGTH. In the earlier examples, TOC_LINE_LENGTH
has the value 60.

• The chapter title must appear at the beginning of the result string and must be
separated from the first dot in the leader by at least one space.

• The page number must appear at the end of the result string so that the last character of
each page number will line up at the column specified by TOC_LINE_LENGTH. Like the
title, the page number must be separated from the last dot in the leader by at least one
space.

• The leader itself is composed of alternating spaces and dots, indicated by the period
character '.'. Moreover, the dots must be arranged so that they line up vertically. If
you simply start the leader one space after the chapter title, the dots would appear to
weave back and forth on the page as illustrated by the following pair of lines:

 1. A Gentle Introduction 1
 2. Introducing JavaScript 39

An easy way to ensure that the dots are aligned correctly is to add an extra space after
chapter titles—like "1. A Gentle Introduction"—with an even number of characters
but not after those—like "2. Introducing JavaScript"—with an odd number.

• You may assume that the chapter title and page number fit in TOC_LINE_LENGTH
character positions and need not make your function handle the situation when the title
is too long for the line.

 – 6 –

Problem 5—Arrays (10 points)
And the first one now
Will later be last
For the times, they are a-changin’.

—Bob Dylan

Write a function rotateArray(array, k) that takes an array and has the effect of
shifting every element k positions toward the beginning of end of the array, and replacing
them at the end of the array with the elements that were shifted out of the beginning of
the array in their original order. For example, if the array digits has the contents

calling

rotateArray(digits, 1);

should shift each of the values one position to the left and move the first value to the end:

Similarly, if the array languages is

calling

rotateArray(languages, 3);

should change the values in the array to

You may assume that k is not negative and that it is not greater than the length of the
array.

 – 7 –

Morgan Stanley to adjust
prices on Facebook trades

By Joseph A. Gainnone
NEW YORK | Wed May 23, 2012 1:22pm EDT

(Reuters) - Morgan Stanley told brokers on
Wednesday it is reviewing every Facebook
Inc trade and will make price adjustments
for retail customers who paid too much
during the social network company’s debut
last week, according to an internal memo.

Problem 6—Working with data structures (15 points)
Although it is hard to imagine now, Facebook’s IPO in 2012 didn’t go as well as
predicted, and the Morgan Stanley brokerage that handled the offering was forced to
make restitution to some clients, primarily for late trades. Suppose, for example, that a
client ordered a sale at 11:28am on May 18, when Facebook was selling at $40.00 a
share. Given the many delays on that day, Morgan Stanley might not have been able to
execute the sell order until 3:58pm, when Facebook shares had dropped to $38.07. That
client therefore lost $1.93 per share, which adds up quickly if the trade involved a large
block of shares.

Suppose that Morgan Stanley has hired you to write a simple application to calculate
refunds due to its customers. You have access to a data structure that contains the
complete history of the share price for Facebook in the early days of trading. The data
structure is an array of aggregates, each of which has three fields: a date field containing
the date as a string (as in "5/18/2012" for May 18, 2012), a time field indicating the
time as a string (as in "11:30am"), and a price field as a number. A few entries in that
array look like this when represented in JSON form:

const FB_SHARE_PRICE_DATA = [
 { date:"5/18/2012", time:"11:30am", price:42.0000 },
 { date:"5/18/2012", time:"11:31am", price:42.0125 },
 { date:"5/18/2012", time:"11:32am", price:42.0250 },
 { date:"5/18/2012", time:"11:33am", price:42.0250 },
 { date:"5/18/2012", time:"11:34am", price:40.9474 },
 { date:"5/18/2012", time:"11:35am", price:40.8425 },
 { date:"5/18/2012", time:"11:36am", price:40.1500 },
 { date:"5/18/2012", time:"11:37am", price:40.0367 },
 { date:"5/18/2012", time:"11:38am", price:40.0000 },
 . . . more entries for May 18 . . .
 { date:"5/18/2012", time:"3:55pm", price:38.0685 },
 { date:"5/18/2012", time:"3:56pm", price:38.1050 },
 { date:"5/18/2012", time:"3:57pm", price:38.0997 },
 { date:"5/18/2012", time:"3:58pm", price:38.0700 },
 { date:"5/18/2012", time:"3:59pm", price:38.2599 },
 { date:"5/18/2012", time:"4:00pm", price:38.2699 },
];

 – 8 –

Write a function

function facebookRefund(nShares, date, timeOrdered, timeExecuted)

that uses the data in FB_SHARE_PRICE_DATA to compute the refund due to a customer who
tried to sell nShares of Facebook stock if the order was made at timeOrdered on the
specified date but the order was not completed until timeExecuted.

As an example, suppose that a client tried to sell 1000 Facebook shares at 11:38am on
May 18, but Morgan Stanley was unable to complete the transaction until 3:58pm. You
can compute the necessary refund by calling

facebookRefund(1000, "5/18/2012", "11:38am", "3:58pm")

The implementation has to look through the FB_SHARE_PRICE_DATA array to find the
price of Facebook stock at the two specified times. From the table on the preceding page,
you can see that Facebook stock was selling for $40.00 per share at 11:38am but had
dropped to $38.07 per share by 3:58pm. Morgan Stanley’s delay therefore cost the client
$1.93 per share. Since the client was selling 1000 shares, the total refund is $1,930.00,
which is the value that facebookRefund should return. The value of facebookRefund
should never be negative. If the client profited from the delay, facebookRefund should
simply return 0. For simplicity, you may assume that FB_SHARE_PRICE_DATA contains
the date and two times passed in.

 – 9 –

Problem 7—Reading data structures from embedded XML (15 points)
Computing is changing the nature of scholarship in almost every discipline. In the
humanities, for example, computers make it possible to collect and analyze historical
material in ways that would be impossible to do by hand.

Suppose that you have been given the job of creating an internal data structure that
represents correspondence, such as the 547 letters exchanged between the poets Robert
Browning and Elizabeth Barrett prior to their marriage in 1846. Excerpts from the first
two of those letters, annotated with header lines that resemble those used in modern email
messages, appear in Figure 1.

Assume that each of the letters has already been scanned and embedded as XML within
the index.html document used to invoke a JavaScript program, as with:

 <exchanges id="ExchangesData" style="display:none">
 <letter to="Elizabeth Barrett" from="Robert Browning" date="10 Jan, 1845">
 I love your verses with all my heart,
 dear Miss Barrett -- and this is no
 off-hand complimentary letter that I
 shall write -- whatever else, no
 prompt matter-of-course recognition of
 your genius . . .
 </letter>
 <letter to="Robert Browning" from="Elizabeth Barrett" date="11 Jan, 1845">
 I thank you, dear Mr Browning, from
 the bottom of my heart. You meant to
 give me pleasure by your letter --
 and even if the subject had not been
 answered, I ought still to thank you.
 But it is thoroughly answered. Such
 a letter from such a hand.
 </letter>
 … similar entries for each of the remaining 545 letters
 </exchanges>

Figure 1. Letters between Robert Browning and Elizabeth Barrett

 – 10 –

All of the exchanges reside within single exchanges element with an id attribute
of "ExchangesData". All of the direct children of the one exchanges element are
letter elements, and each letter element has three, self-explanatory attributes for each
of the header fields: "to", "from", and "date". Additionally, the inner HTML of each
letter element is the free text of the exchange; in particular, each nonempty line of the
inner HTML is a line of handwritten text from the original correspondence.

Write a function readLetters() that parses the embedded XML rooted at the
exchanges element and builds and returns an internal JavaScript object with all of the
same information. In particular, the readLetters function returns an array of aggregate
structures, each of which represents a letter in the collection of correspondence. Each
aggregate is a map containing the header fields and values, along with a special field
named body that contains the body of the message as an array of nonempty lines (the
empty lines should just be omitted).

For example, if index.html contains just two well-formed letter elements for the two
correspondences shown in Figure 1, the internal data would look like this in JSON form:

[
 { to: "Elizabeth Barrett",
 from: "Robert Browning",
 date: "10 Jan, 1845",
 body: [
 "I love your verses with all my heart,",
 "dear Miss Barrett -- and this is no",
 "off-hand complimentary letter that I",
 "shall write -- whatever else, no",
 "prompt matter-of-course recognition",
 "of your genius . . ."]
 },
 { to: "Robert Browning",
 from: "Elizabeth Barrett",
 date: "11 Jan, 1845",
 body: [
 "I thank you, dear Mr Browning, from",
 "the bottom of my heart. You meant to",
 "give me pleasure by your letter --",
 "and even if the object had not been",
 "answered, I ought still to thank you.",
 "But it is thoroughly answered. Such",
 "a letter from such a hand!"]
 }
]

In this problem, all you have to do is read the data into the internal structure. Any actual
analyses of the letters are the responsibility of the clients of your readLetters function.

