
Jerry Cain Handout #46
CS 106AJ November 26, 2018

Practice Final Examination #1

Review session: Saturday, December 8, 11:00A.M. –1:00P.M. (McCullough 115)
Scheduled final: Monday, December 10, 8:30–11:30A.M. (380-380C)

This handout is intended to give you practice solving problems that are comparable in
format and difficulty to those which will appear on the final examination. A solution set
to this practice examination will be posted online later this week.

Time of the exam
The final exam is scheduled for Monday, December 10, 8:30–11:30A.M. in Building 380,
Room 380C. If you are unable to take the final exam at the scheduled time, or if you
need special accommodations, please send an email message to rebs@stanford.edu
stating the following:

• The reason you cannot take the exam at one of the two scheduled times.
• A list of three-hour blocks (or longer if you have OAE accommodations)

on Monday, Tuesday, Wednesday, or Thursday of exam week at which
you could take the exam. These time blocks must be during the regular
working day and must therefore start between 8:30 and 2:00.

In order to arrange special accommodations, Ryan must receive a message from you by
5:00P.M. on Thursday, December 6. Replies will be sent by electronic mail on Friday,
December 7.

Review session
The course staff will conduct a review session on Saturday, December 8, from
11:00A.M.–1:00P.M. in McCullough 115. We will announce the winners of the Adventure
Contest and hold the random grand-prize drawing at the beginning of the review session.

Coverage
The exam covers the material presented in class through this Friday, which means that
you are responsible for the material in Chapters 1 through 12, excluding Chapter 11 of
Understanding Programming through JavaScript.

General instructions
The instructions that will be used for the actual final look like this:

Answer each of the questions given below. Write all of your answers directly on
the examination paper, including any work that you wish to be considered for
partial credit.

Each question is marked with the number of points assigned to that problem. The
total number of points is 100. We intend that the number of points be roughly
equivalent to the number of minutes someone who is completely on top of the

 – 2 –

material would spend on that problem. Even so, we realize that some of you will
still feel time pressure. If you find yourself spending a lot more time on a
question than its point value suggests, you might move on to another question to
make sure that you don’t run out of time before you’ve had a chance to work on
all of them.

In all questions, you may include functions or definitions that have been
developed in the course by giving the name of the function and the handout or
chapter number in which that definition appears.

The examination is open-book, and you may make use of any texts, handouts, or
course notes. You may not, however, use a computer of any kind.

Note: To conserve trees, I have cut back on answer space for the practice exams. The
actual final will have much more room for your answers and for any scratch work.

Please remember that the final is open-book.

 – 3 –

Problem 1—Short answer (10 points)
1a) Suppose that the integer array list has been declared and initialized as follows:

let list = [10, 20, 30, 40, 50];

 This declaration sets up an array of five elements with the initial values shown in the

diagram below:

list

 10 20 30 40 50

 Given this array, what is the effect of calling the function

mystery(list);

 if mystery is defined as:

function mystery(array) {
 let tmp = array[array.length - 1];
 for (let i = 1; i < array.length; i++) {
 array[i] = array[i - 1];
 }
 array[0] = tmp;
}

 Work through the function carefully and indicate your answer by filling in the

boxes below to show the final contents of list:

list

1b) What is the result of calling the function conundrum in the following code:

function conundrum() {
 let x = 6;
 let y = 17;
 let f = puzzle(y);
 console.log(f(x));
}

function puzzle(x) {
 return function(y) { return 2 * x - y; };
}

 – 4 –

Problem 2—Simple graphics (15 points)
Although the definition of filling for an arc (see page 202 in the reader) is not necessarily
what you would want for all applications, it turns out to be perfect for the problem of
displaying a traditional pie chart. Your job in this problem is to write a function

function createPieChart(r, data)

that creates a GCompound object for a pie chart with a set of data values, where r
represents the radius of the circle, and data is the array of data values you want to plot.

The operation of the createPieChart function is easiest to illustrate by example. If you
execute the following function:

function TestPieChart() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let data = [45, 25, 15, 10, 5];
 let pieChart = createPieChart(50, data);
 gw.add(pieChart, gw.getWidth()/2, gw.getHeight()/2);
}

your program should generate the following pie chart in the center of the window:

The red wedge corresponds to the 45 in the data array and extends 45% around the circle,
which is not quite halfway. The yellow wedge then picks up where the red wedge left off
and extends for 25% of a complete circle. The blue wedge takes up 15%, the green
wedge takes up 10%, and the pink wedge the remaining 5%.

As you write your solution to this problem, you should keep the following points in mind:

• The values in the array are not necessarily percentages. What you need to do in your

implementation is to divide each data value by the sum of the elements to determine
what fraction of the complete circle each value represents.

• The colors of each wedge are specified in the following constant array:
const WEDGE_COLORS = [
 "Red", "Yellow", "Blue", "Green", "Pink", "Cyan"
];

 If you have more wedges than colors, you should just start the sequence over, so that
the sixth wedge would be red, the seventh yellow, and so on.

• The reference point of the GCompound returned by createPieChart must be the center
of the circle.

 – 5 –

Problem 3—Interactive graphics (20 points)
In all probability, you have at some point seen the classic “Fifteen Puzzle” which first
appeared in the 1880s. The puzzle consists of 15 numbered squares in a 4 ´ 4 box that
looks like the following picture, which is taken from the Wikipedia entry for the puzzle:

One of the squares is missing from the 4´4 grid, which creates a hole in the pattern. The
puzzle is constructed so that you can slide any of the adjacent squares into the position
currently taken up by the hole. The object of the game is to take a scrambled puzzle and
restore it to the original state.

For this problem, your task is to create a program that simulates the Fifteen Puzzle, which
is easiest to do in two steps:

Step 1.
Write a program FifteenPuzzle that displays the initial state of the Fifteen Puzzle with
the 15 numbered squares arranged as shown in the diagram. Each of the pieces should be
a GCompound containing a square outlined in black and filled in light gray, with a
number centered in the square using an 18-point font in Times New Roman, which is
given as the constant PUZZLE_FONT. The size of the square is determined by the
constant SQSIZE, and the constants GWINDOW_WIDTH and GWINDOW_HEIGHT are set so the
squares completely fill the graphics window.

When you have finished the code for step 1, the graphics window should look like this:

 – 6 –

Step 2.
Animate the program so that clicking on a square moves it into the adjacent empty space,
if possible. This task is easier than it sounds. All you need to do is:

1. Figure out which square you clicked on, if any, by using getElementAt to check for

an object at that location.
2. Check the adjacent squares to the north, south, east, and west. If any of these squares

is both inside the window and unoccupied (which can be true for at most one of the
directions), move the square in that direction. If none of the directions work, do
nothing.

For example, if you click on the square numbered 5 in the starting configuration, nothing
should happen because all of the directions from square 5 are either occupied or outside
of the window. If, however, you click on square 12, your program should figure out that
there is no object to the south and then move the square to that position, as follows:

 – 7 –

Problem 4—Strings (15 points)
In Dan Brown’s best-selling novel The Da Vinci Code, the first clue in a long chain of
puzzles is a cryptic message left by the dying curator of the Louvre. Two of the lines of
that message are

O, Draconian devil!
Oh, lame saint!

Professor Robert Langdon (the hero of the book, played by Tom Hanks in the movie)
soon recognizes that these lines are anagrams—pairs of strings that contain exactly the
same letters even if those letters are rearranged—for

Leonardo da Vinci
The Mona Lisa

Your job in this problem is to write a predicate function

isAnagram(s1, s2)

that takes two strings and returns true if they contain exactly the same alphabetic
characters, even though those characters may appear in any order. Thus, your function
should return true for each of the following calls:

isAnagram("O, Draconian devil!", "Leonardo da Vinci")
isAnagram("Oh, lame saint!", "The Mona Lisa")
isAnagram("ALGORITHMICALLY", "logarithmically")
isAnagram("Doctor Who", "Torchwood")

These examples illustrate two important requirements for the isAnagram function:

• The implementation should look only at letters (feel free to use the isLetter function

from several textbook examples), ignoring any extraneous spaces and punctuation
marks thrown in along the way.

• The implementation should ignore the case of the letters in both strings.

There are many different algorithmic strategies you could use to decide whether two
strings contain the same alphabetic characters. If you’re having trouble coming up with a
strategy, you should note that two strings are anagrams if and only if they would generate
the same letter-frequency table, as discussed in the lecture on arrays.

 – 8 –

Problem 5—Arrays (10 points)
Write a function

function doubleImage(oldImage)

that takes an existing, fully loaded GImage and returns a new GImage that is twice as large
in each dimension as the original. Each pixel in the old image should be mapped into the
new image as a 2 ´ 2 square in the new image where each of the pixels in that square
matches the original one.

As an example, suppose that you have a GImage from the file TinyFrenchFlag.png that
looks like this, where the diagram has been expanded so that you can see the individual
pixels, each of which appears as a small outlined square:

This 6 ´ 4 rectangle has two columns of blue pixels, two columns of white pixels, and two
columns of red pixels. Calling

let biggerFlag = doubleImage(GImage("TinyFrenchFlag.png"));

should create a new image with the following 12 ´ 8 pixel array:

The blue pixel in the upper left corner of the original has become a square of four blue
pixels, the pixel to its right has become the next 2 ´ 2 square of blue pixels, and so on.

Keep in mind that your goal is to write an implementation of doubleImage that works
with any GImage and not just the flag image used in this example.

 – 9 –

I don’t know if I believe in Sasquatch
but he sure do stink.

—Sherman Alexie, “The Sasquatch Poems”

Problem 6—Working with data structures (15 points)
Adventure was not the first widely played computer game in which an adventurer
wandered in an underground cave. As far as we know, that honor belongs to the game
“Hunt the Wumpus,” which was developed by Gregory Yob in 1972.

In the game, the wumpus is a fearsome beast that lives in an underground cave composed
of 20 rooms, each of which is numbered between 1 and 20. Each of the twenty rooms has
connections to three other rooms, represented as an array—one element per room—of
three-element arrays containing the numbers of the connecting rooms. (Because the
room numbers don’t start with 0, the data structure puts a null in element 0 of the outer
array, which is never used.) In addition to the connections, the data structure for the
wumpus game also keeps track of the room number occupied by the player and the room
number in which the wumpus resides.

In an actual implementation of the wumpus game, the information in this data structure
would be generated randomly. For this problem, which focuses on whether you can work
with data structures that have already been initialized, you can imagine that the data
structure has been initialized using the JSON notation shown in Figure 1.

Figure 1. JSON representation of the data structure for the wumpus cave

const WUMPUS_CAVE = {
 playerLocation: 2, // The player is in room 2
 wumpusLocation: 19, // The wumpus is in room 19
 connections: [
 null, // room 0 is not used
 [6, 14, 16], // room 1 connects to rooms 6, 14, and 16
 [3, 7, 18], // room 2 connects to rooms 3, 7, and 18
 [2, 16, 20], // room 3 connects to rooms 2, 16, and 20
 [6, 18, 19], // and so forth
 [8, 9, 11],
 [1, 4, 15],
 [2, 12, 19],
 [5, 10, 13],
 [5, 11, 17],
 [8, 14, 16],
 [5, 9, 18],
 [7, 14, 16],
 [8, 15, 20],
 [1, 10, 12],
 [6, 12, 13],
 [1, 3, 10],
 [9, 19, 20],
 [2, 4, 11],
 [4, 17, 17],
 [3, 13, 17]
]
};

 – 10 –

Looking at the data structure allows you to diagram the rooms in the cave. Here is a
piece of the cave map centered on the location of the player in room 2:

The player is in room 2, which has connections to rooms 3, 7, and 18. Similarly room 7
has connections to rooms 2, 12, and 19, which is where the wumpus is lurking. The other
connections from rooms 4, 11, 16, 20, 12, and 19 are not shown.

It was usually possible to avoid the wumpus because, like the Sasquatch in the Sherman
Alexie poem, the wumpus was so stinky that the player could smell the wumpus from up
to two rooms away. Thus, in the diagram above, the player can smell the wumpus. If,
however, the wumpus were to wake up and move to a room beyond the boundaries of this
diagram, the scent of the wumpus would disappear.

Write a predicate function playerSmellsWumpus, which takes the entire data structure as
an argument and returns true if the player smells the wumpus and false otherwise.
Thus, calling

playerSmellsWumpus(WUMPUS_CAVE)

would return true. The function would also return true if the wumpus were in rooms 3,
7, or 18, which are one room away from the player. If, however, the wumpus were in one
of the rooms not shown on this map, playerSmellsWumpus would return false.

 – 11 –

Problem 7—Reading data structures from embedded XML (15 points)
The United Kingdom general election of 2017 took place this past June 8th. In each
parliamentary district, which are called constituencies in Britain, several candidates from
different parties will be running, although not all parties will contest every election. Each
candidate will receive some number of votes in the election. Under Britain’s "first past
the post" system, the candidate who wins the greatest number of votes wins the seat for
that constituency, even if that candidate does not win a majority of the votes cast.

Imagine that you have been hired by a consulting firm that seeks to analyze the results of
the 2015 (not the 2017) election, which have been conveniently embedded within the
relevant index.html file, as with:

<election id="ElectionData" style="display:none">
 <constituency name="Aberavon">
 <candidate name="Stephen Kinnock" party="Labour" votes="15416"/>
 <candidate name="Peter Bush" party="UKIP" votes="4971"/>
 <candidate name="Edward Yi He" party="Conservative" votes="3742"/>
 </constituency>
 <constituency name="Aberconwy">
 <candidate name="Guto Bebb" party="Conservative" votes="12513"/>
 <candidate name="Mary Wimbury" party="Labour" votes="8514"/>
 <candidate name="Andrew Haigh" party="UKIP" votes="3467"/>
 </constituency>
 <constituency name="Aberdeen North">
 <candidate name="Kirsty Blackman" party="SNP" votes="24793"/>
 <candidate name="Richard Baker" party="Labour" votes="11397"/>
 <candidate name="Sanjoy Sen" party="Conservative" votes="5304"/>
 <candidate name="Euan Davidson" party="LibDem" votes="2050"/>
 </constituency>
 …
 <constituency name="Brighton Pavilion">
 <candidate name="Caroline Lucas" party="Green" votes="22871"/>
 <candidate name="Purna Sen" party="Labour" votes="14904"/>
 <candidate name="Clarence Mitchell" party="Conservative" votes="12448"/>
 </constituency>
 …
 <constituency name="York Outer">
 <candidate name="Julian Sturdy" party="Conservative" votes="26477"/>
 <candidate name="Joe Riches" party="Labour" votes="13348"/>
 <candidate name="James Blanchard" party="LibDem" votes="6269"/>
 <candidate name="Paul Abbott" party="UKIP" votes="5251"/>
 </constituency>
</election>

The XML data is anchored by a single <election> tag with an id of "ElectionData",
which itself contains a series of zero or more <constituency> tags as direct children.
Each <constituency> tag has a name attribute whose value is the name of the
constituency, and each <constituency> contains zero or more <candidate> tags, which
themselves cannot have any child elements. Each <candidate> tag contains three
attributes: the name attribute, whose value is the name of a candidate; the party attribute,
whose value is the candidate’s party; and the votes attribute, whose value is the number
of votes that candidate received in the 2015 general election. For simplicity, you’re to

 – 12 –

assume that the XML of interest is perfectly formatted, so you needn’t do any error
checking.

Implement a JavaScript ElectionData class whose factory method has the following
header line:

function ElectionData()

Calling ElectionData should parse the relevant XML and return an initialized data
structure that includes the data in a suitable internal form. Your data structure for
ElectionData should include the following methods:

• A method getConstituencyNames that returns an array containing the constituency

names that appear in the file.
• A method getResults(name) that returns the results of the election for the

constituency with the specified name. The result is an array, each of whose elements
is an aggregate with the fields candidate, party, and votes. For example, calling
getResults("Aberavon") should return the following array, as it would be expressed
in JSON form:

[
 { "candidate":"Stephen Kinnock", "party":"Labour", "votes":15416 },
 { "candidate":"Peter Bush", "party":"UKIP", "votes":4971 },
 { "candidate":"Edward Yi He", "party":"Conservative", "votes":3742 }
]

In this problem, all you have to do is read the XML into the internal structure. Any
actual analyses of results are the responsibility of the clients of your ElectionData class.
For example, if someone wanted to determine the total vote for the Labour party across
all constituencies, that person could use the following code:

function TestElectionData() {
 let electionData = ElectionData();
 let totalLabourVote = 0;
 let constituencies = electionData.getConstituencyNames();
 for (let i = 0; i < constituencies.length; i++) {
 let results = electionData.getResults(constituencies[i]);
 for (let j = 0; j < results.length; j++) {
 if (results[j].party === "Labour") {
 totalLabourVote += results[j].votes;
 }
 }
 }
 console.log("Total Labour vote = " + totalLabourVote);
}

