
Jerry Cain Handout #44
CS 106AJ November 26, 2018

Assignment #6—Adventure

The vitality of thought is in adventure.
— Alfred North Whitehead, Dialogues, 1953

Due: Friday, December 7, 5:00P.M.
Last possible submission date: Sunday, December 9, 5:00P.M.
Note: This assignment may be done in pairs

This assignment and handout were written by Eric Roberts.

Welcome to the final assignment in CS 106AJ! Your mission in this assignment is to
write a simple text-based adventure game in the tradition of Will Crowther's pioneering
"Adventure" program of the early 1970s. In games of this sort, the player wanders
around from one location to another, picking up objects, and solving simple puzzles. The
program you will create for this assignment is less elaborate than Crowther’s original
game and is therefore limited in terms of the type of puzzles one can construct for it.
Even so, you can still write a program that captures much of the spirit and flavor of the
original game.

Because this assignment is large and detailed, it takes quite a bit of writing to describe
it all. This handout contains everything you need to complete the assignment, along with
a considerable number of hints and suggestions. To make it easier to read, the document
is divided into the following sections:

1. Overview of the adventure game .. 2
2. Structure of the XML entries .. 5
3. Milestones .. 6
4. Administrative rules (partners, late days, and the like) 14

Try not to be daunted by the size of this handout. The code is not as large as you
might think. If you start early and follow the suggestions in the "Milestones" section,
things should work out beautifully.

 – 2 –

Section 1
Overview of the Adventure Game

The adventure game you will implement for this assignment—like any of the text-based
adventure games that were the dominant genre before the advent of more sophisticated
graphical adventures like the Myst/Riven/Exile series—takes place in a virtual world in
which you, as the player, move about from one location to another. The locations, which
are traditionally called rooms (even though they may be outside), are described to you
through a written textual description that gives you a sense of the geography. You move
about in the game by giving commands, most of which are simply an indication of the
direction of motion. For example, in the classic adventure game developed by Willie
Crowther, you might move about as follows:

In this example, you started outside the building, followed the road up the hill by
typing WEST, and arrived at a new room on the top of the hill. Having no obvious places
to go once you got there, you went back toward the east and ended up outside the
building again. As is typical in such games, the complete description of a location
appears only the first time you enter it; the second time you come to the building, the
program displays a much shorter identifying tag, although you can get the complete
description by typing LOOK, as follows:

From here, you might choose to go inside the building by typing IN, which brings you to
another room, as follows:

 – 3 –

In addition to the new room description, the inside of the building reveals that the
adventure game also contains objects: there is a set of keys here. You can pick up the
keys by using the TAKE command, which requires that you specify what object you’re
taking, like this:

The keys will, as it turns out, enable you to get through a grating at the bottom of the
streambed that opens the door to Colossal Cave and the magic it contains.

In these examples, user input appears in uppercase so that it is easier to see. Your
program should recognize commands in lowercase or in any combination of the two.

The code for the teaching machine
The best model for the Adventure assignment is the second of the two teaching machine
examples that I presented on the day before the Thanksgiving holiday. The starter project
for Assignment 6 includes the code for the revised teaching machine so that you can copy
whatever parts of the code you think would be useful.

Like the teaching machine program, the adventure program you create for this
assignment is entirely data driven. The program itself doesn’t know the details of the
game geography, the objects that are distributed among the various rooms, or even the
words used to move from place to place. All such information is supplied in the form of
XML entries in the HTML index file, which the program then uses to control its own
operation. If you change the XML description of the game, the same program will guide
the player through a different adventure.

As with the Enigma assignment, Adventure is partitioned into several milestones that
will allow you to get the program working in stages. It will save you a great deal of time
on this assignment if you get each milestone working before you move on to the next.

 The starter project includes an index.html file that includes much of the geography
from Willie Crowther’s original game along with a few of the puzzles. The description
of the game itself is contained inside the index file in an invisible <div> tag with the id
"GameData". The <div> tag appears in the <body> section of each index file in a
structure that looks like this:

<div id="GameData" style="display:none;">
 . . . the description of the game is included here . . .
</div>

your program can retrieve the parsed XML description of the entire game by calling

document.getElementById("GameData")

which returns an element from the Document Object Model (DOM) that contains all the
information you need.

 – 4 –

The various XML tags that can appear inside this particular <div> element are
described later in this handout in conjunction with the milestone in which you implement
the relevant tag.

The contents of the starter folder
The starter folder for the Adventure assignment includes the following files:

• Adventure.js—This file defines the Adventure function itself, which is just a few

lines long and looks almost exactly the same as the TeachingMachine.js file in the
example. We’ve provided the complete code for Adventure.js as shown in Figure 1,
and you shouldn’t need to change anything in this file at all.

• AdvGame.js—This file defines the AdvGame class, which implements the game and is
therefore analogous to the TMCourse class in the teaching machine. The AdvGame
factory method is responsible for reading the XML data from the index file and storing
it in a suitable data structure. This class also exports the play method, which is called
by the main program to play the game. Although the play method is complex, you
will have a chance to build it up gradually as you go through the milestones.

• AdvRoom.js—This file defines the AdvRoom class, which represents a single room in
the game and is analogous to the TMQuestion class in the teaching machine. The
starter file contains the header lines for all the methods exported by AdvRoom for any of
the milestones, but you don’t need to implement these methods until you get to the
appropriate point in the assignment.

• AdvObject.js—This file defines the AdvObject class, which represents an object in
the game. As with the AdvRoom class, this file specifies the header lines for all the
methods that AdvObject supports. You will have a chance to implement these
methods in Milestone #4.

• AdvPassage.js—This file defines the AdvPassage class, which represents a passage.
This file is provided in its complete form, mostly because doing so gives you an
example of a simple class definition. You will use this class starting in Milestone #7.

Figure 1. The Adventure.js starter file

 – 5 –

Section 2
Structure of the XML Entries

Although you won’t see the implementation of several of these features until you
implement the later milestones, it is useful to have a sense of what the internal structure
of the relevant XML looks like. The game XML section contains three types of entries:

1. Rooms. Each room is defined by a <room> section, which has the following form:

<room name="name used to refer to the room" short="a short description">
 . . . The long description of the room, which may span several lines . . .
 . . . A sequence of passage tags that describe the exits from this room . . .
</room>

The <passage> tags that follow the room description look like this:

<passage dir="motion verb" room="room name" key="object name"/>

The key attribute is optional and is used to indicate that the player needs to be holding
a specific object to traverse a particular passage. For example, one of the passages
for the room above the entrance to the cave is defined as

<passage dir="DOWN" room="BeneathGrate" key="KEYS" />

which signifies that the player can only go down to the room named "BeneathGrate"
if the player has the object named "KEYS". Locked passages are discussed in more
detail in Milestone #7.

2. Objects. Each object is defined by an <object> section, which looks like this:

<object name="name used to refer to the object" location="room name">
 . . . A single line describing the object . . .
</object>

Objects are introduced in Milestone #4.

3. Synonyms. The adventure game allows the player to enter abbreviations for many of

the more common commands. For example, the compass points N, E, S, and W are
defined to be equivalent to NORTH, EAST, SOUTH, and WEST. Similarly, if it makes
sense to refer to an object by more than one word, you can use a <synonym> tag to
define the two as synonyms. As you explore the cave, you will encounter a gold
nugget, and it makes sense to allow players to refer to that object using either of the
words GOLD or NUGGET. The <synonym> tag has the following form:

<synonym word="the synonym" definition="the canonical form of the word" />

For example, the index.html file includes the following <synonym> tags:

<synonym word="N" definition="NORTH" />
<synonym word="GOLD" definition="NUGGET" />

Synonyms are introduced in Milestone #6.

 – 6 –

Section 3
Milestones

For a project of any reasonable complexity, it is important to implement the project in
stages rather than trying to get it going all at once. As with the Enigma assignment,
we’ve given you a set of milestones that will lead you through the process in a series of
manageable steps.

Milestone #1: Modify the teaching machine code so that it fits with Adventure
As I showed at the end of Friday’s lecture, the TeachingMachine.js program works as a
rudimentary Adventure-style game if you simply change the HTML index file. The
result of doing so, however, does not constitute a useful basis for building up a more
sophisticated Adventure game. If nothing else, the metaphors used in the code are
entirely inappropriate to the new context. The teaching machine program talks about
courses, questions, and answers, none of which make sense in the Adventure world. The
corresponding concepts in Adventure are games, rooms, and passages. Your first step is
to take the code for the teaching machine and adapt it so that it makes sense for the
Adventure-game model.

You have two starting points for this phase of the project. The TeachingMachine
folder contains the code for the teaching machine application presented the Friday prior
to Thanksgiving break. The Adventure folder contains the starter versions of the files
you need to implement the classes used in the Adventure game. Your task for this
milestone is to adapt the code from the TMCourse.js and TMQuestion.js files into their
AdvGame.js and AdvRoom.js counterparts (you don’t have to do anything with the other
files until later milestones).

The code you need to complete this milestone is entirely there already, at least in a
functional sense. All you have to do is copy the code out of the classes for the teaching
machine application and add it back to the corresponding classes in the Adventure game,
changing the names of fields and methods so that they fit the Adventure game metaphor.
The new names of the exported methods are given to you as part of the starter files, but
you will also need to change the names of helper functions and local variables so that
they make sense in the context of the game.

This milestone has two primary purposes:

1. To ensure that you understand what’s going on in the teaching machine application.
2. To give you some practice in debugging. Even though the structure of the code

remains exactly the same, this milestone is not as easy as you might think. Nearly all
the variable and method names will have to change, and you’ll need to be careful to
make sure that your changes are consistent. Since you’ll probably make some
mistakes along the way, you’ll need to polish up your debugging skills to figure out
exactly what you did wrong.

When you finish this milestone, you should be able to wander a bit around the surface of
the Adventure world, heading up to the top of the hill, inside the building, and down to
the grate. You won’t, unfortunately, be able to get past the grate until Milestone #7.

 – 7 –

Milestone #2: Implement short descriptions of the rooms
The Adventure game would be tedious to play—particularly when output devices were as
slow as they were in the 1970s—if the program always gave the full description of the
room every time you entered it. Crowther’s game introduced the idea of short
descriptions, which were one-line descriptions for rooms that the player has already
visited. The long description appeared the first time a room was entered, and the short
description appeared thereafter.

Your job in this milestone is to implement this feature in your program. You will need
to implement the printShortDescription method in the AdvRoom class, making sure
that it correctly implements the functionality described in the comments. It is also
important to keep in mind that some rooms do not include the short attribute, which
means that they have no short description. In that case, which you can determine if
calling getAttribute returns null (not undefined, as is true for missing properties),
calling printShortDescription should simply print the long description.

You will also need to implement the setVisited and hasBeenVisited methods that
keep track of whether the room has been visited earlier in the game. You will then need
to modify your code for the play method so that it checks the visited flag before printing
the long or the short description, as appropriate.

Once you have completed this milestone, your program should be able to generate the
following sample run:

Note that the second time the player reaches the starting room, the program displays the
short description.

Milestone #3: Implement the QUIT, HELP, and LOOK commands
Most of the commands entered by the player are words like WEST or EAST that indicate a
passage to another room. Collectively, these words are called motion verbs. Motion
verbs, however, are not the only possible commands. The Adventure game allows the
player to enter various built-in commands called action verbs. The six action verbs you
are required to implement (although you only need to implement QUIT, HELP, and LOOK as
part of this milestone) are described in Figure 2 at the top of the next page.

The first thing you need to do to implement this milestone is to subdivide the user’s
input into individual words. Once you’ve done that, you need to look at the first word to

 – 8 –

see if it is one of the action verbs before checking whether a motion verb applies. You
then need to implement the first three action verbs. The QUIT command stops the
program from reading any more user commands, just as a new room with the name
"EXIT" does in the code you adapted from the teaching machine application. The HELP
command should print the contents of the HELP_TEXT constant on the console using
console.log. The LOOK command calls printLongDescription for the current room.

Once you have finished this milestone, your program should be able to produce this

sample run:

Figure 2. The built-in action verbs

 – 9 –

Milestone #4: Read in the objects and distribute them to their initial locations
The most important extension that separates the Adventure game from the teaching
machine application is the introduction of objects like keys and treasures. The objects are
specified in the index.html file using <object> tags that look like this:

<object name="name used to refer to the object" location="room name">
 . . . A single line describing the object . . .
</object>

For example, the first object definition in the index.html file looks like this:

<object name="KEYS" location="InsideBuilding">
 a set of keys
</object>

This entry shows that there is an object named "KEYS" that starts off in the room named
"InsideBuilding" whose one-line description is "a set of keys".

As a special case, specifying the location as "PLAYER" is interpreted as indicating that
the object starts off in the player’s possession. For example, the entry

<object name="WATER" location="PLAYER">
 a bottle of water
</object>

indicates that the water bottle should be in the player’s possession when the game begins.

To implement this milestone, you need to complete the following tasks:

1. Implement the AdvObject class, which is similar in structure to AdvRoom. The

AdvObject factory method takes the name, the description between the <object> and
</object> tags, and location as parameters and returns an object that encapsulates
these three data values. The AdvObject class also exports getter methods for the
three internal fields—getName, getDescription, and getLocation—each of which
is specified in the starter file. As is often the case with getter methods, each of these
methods can be implemented in a single line of code.

2. In the AdvRoom class, you will need to add a local variable that keeps track of the
objects in the room, presumably as an array of AdvObject values. The AdvRoom class
also exports the following methods for manipulating the list of objects:
• room.describeObjects(), which describes the objects in the room.
• room.addObject(obj), which adds the object to the room.
• room.removeObject(obj), which removes the object from the room.
• room.contains(obj), which returns true if the object is in the room.

3. In the AdvGame class, you need to make the following changes:
• Add a call to readObjects to read in the data for the objects.
• Add a local variable to keep track of the objects the player is holding.
• Add a new function to distribute the objects to their appropriate initial locations.
• Call the describeObjects method whenever you describe a room.

 – 10 –

Given that Milestone #4 does not yet allow you to pick up and drop objects, the only
thing you can do to test whether this part of the assignment works is to see whether the
objects are listed as part of the room descriptions. For example, you should make sure
that the keys are listed inside the building, as shown in the following sample run:

Milestone #5: Implement the TAKE, DROP, and INVENTORY commands
The next step is to add the TAKE, DROP, and INVENTORY commands to the command
processor you implemented for Milestone #3. The TAKE command looks up the object
name, checks to see if that object is in the room, and if so, removes it from the room and
adds it to the player’s inventory. The DROP command reverses the process, removing an
object from the player’s inventory and then adding that object to the room. The
INVENTORY command goes through the player’s inventory and prints the description of
each object. If the player’s inventory is empty, the INVENTORY command should display
the string "You are empty-handed". These behaviors are illustrated in the following
sample run from the beginning of the game:

 – 11 –

Milestone #6: Implement synonyms
At this point in your implementation, your debugging sessions will have you wandering
through the Adventure game more than you did in the beginning. As a result, you will
almost certainly find it convenient to implement the synonym mechanism, so that you can
type N, S, E, and W instead of the full names for the compass directions. The complete set
of <synonym> entries in the index.html file looks like this:

<synonym word="Q" definition="QUIT" />
<synonym word="L" definition="LOOK" />
<synonym word="CATCH" definition="TAKE" />
<synonym word="RELEASE" definition="DROP" />
<synonym word="I" definition="INVENTORY" />
<synonym word="N" definition="NORTH" />
<synonym word="S" definition="SOUTH" />
<synonym word="E" definition="EAST" />
<synonym word="W" definition="WEST" />
<synonym word="U" definition="UP" />
<synonym word="D" definition="DOWN" />
<synonym word="BACK" definition="OUT" />
<synonym word="GOLD" definition="NUGGET" />
<synonym word="BAG" definition="COINS" />
<synonym word="NEST" definition="EGGS" />
<synonym word="BOTTLE" definition="WATER" />

To implement the synonym processing, you need to read through the <synonym> tags

in the index.html file and use them to create an object that maps alternative word forms
into their standard definition. The easiest place to implement this feature is in the
AdvGame class. Whenever you read a word—which might be a motion verb, an action
verb, or the name of an object—you need to see if that word exists in the synonym table
and, if so, substitute the standard definition.

Milestone #7: Implement locked passages
When you modified the teaching machine code for Milestone #1, you presumably defined
the structure representing passages to be a map from direction names to room names.
That is, after all, how the teaching machine worked, and we didn’t suggest you change it.

Unfortunately, using a map doesn’t quite work for the Adventure game. If you look
closely at the list of passages for certain rooms, you will discover that the same direction
name can occur more than once in the list. For example, the <room> entry for the room
above the grate that leads to the underground part of the cave has the following contents:

<room name="OutsideGrate" short="Outside grate">
 You are in a 20-foot depression floored with bare dirt.
 Set into the dirt is a strong steel grate mounted in
 concrete. A dry streambed leads into the depression from
 the north.
 <passage dir="NORTH" room="SlitInRock" />
 <passage dir="UP" room="SlitInRock" />
 <passage dir="DOWN" room="BeneathGrate" key="KEYS" />
 <passage dir="DOWN" room="MissingKeys" />
</room>

 – 12 –

As you can see, the motion verb "DOWN" appears twice in the list of passages. The first
one is associated with a key field that has the value "KEYS" and takes the player to a
room named "BeneathGrate". The second has no key field and sends the player off to a
room named "MissingKeys" that you’ll have a chance to see in Milestone #8. This
definition is an example of a locked passage, which is one that requires the player to be
holding a specified object that unlocks the passage. In this case, the key is literally the
set of keys that starts off inside the building. If the keys are in the player’s inventory,
applying the motion verb DOWN uses the first passage; if not, applying DOWN skips over that
passage and follows the one to the room named "MissingKeys".

This new interpretation requires you to change the implementation of the data structure
used to represent passages, since a map doesn’t allow multiple values with the same key.
What you need to do is change the data structure used to represent the passages from a
map to an array in which the individual elements are AdvPassage objects containing a
direction, the name of the destination room, and an optional key value. The code that
moves from one room to another based on the player’s input must search through the
array to find the first option that applies.

The first step in adopting this new design is to take a look at the AdvPassage class,
which you’ve been able to ignore up to now. This class, which is fully implemented in
the starter folder, is an extremely simple one that looks like any of the simple class
examples from the reader. The factory method takes the three components and keeps
track of them in the closure. The getter methods simply return these values.

The changes you need to make for Milestone #7 are in the AdvRoom and AdvGame
classes. You will, for example, have to change your implementation of readRoom so that
it stores the data for the passages in an array rather than a map. You also need to change
the way that the getNextRoom method works, since this method now has to take account
of what the player is carrying. That requirement, however, creates a bit of a problem.
The AdvRoom class doesn’t know what the player is carrying, since that information is
stored available only inside the AdvGame class.

There are several strategies you might use to solve this problem. One possibility is to
pass the player’s inventory—along with the map from object names to AdvObject
structures—as additional arguments to the getNextRoom method. On the whole,
however, it is probably simpler to reassign the task of figuring out the which room you
reach after moving in a particular direction into the AdvGame class, which already has the
necessary information. Doing so requires making the structure containing the array of
passages available to clients of AdvRoom, which is easily done by adding a getPassages
method to the class.

Once you have implemented this change, you should be able to explore the entire
Adventure game, picking up objects and using them as keys to get through previously
closed passages. You still, however, would be prevented from escaping through a
passage unless you’re holding the necessary key. For that, you need to implement the
final milestone.

 – 13 –

Milestone #8: Implement forced motion
When the player tries to go through a locked passage without the necessary key, the game
has to indicate that the motion is prohibited. One possible strategy would be to design a
whole new data structure to represent messages of this type. A simpler way, however, is
to make a small extension to the structure that is already in place.

When Willie Crowther faced this problem in his original Adventure game, he chose
the simple approach. He simply created new rooms whose descriptions contained the
messages he wanted to deliver. When the player entered one of those rooms, the code
that you’ve been running all along would print out the necessary message, just like any
other room description. The only problem is that you don’t actually want the player to
end up in that room, but rather to be moved automatically to some other room. To
implement this idea, Crowther came up with the idea of using a special motion verb
called "FORCED" to specify forced motion.

Whenever the player ever enters a room in which one of the connections is associated
with the motion verb FORCED (and the player is carrying any object that the FORCED verb
requires to unlock the passage), your program should display the long description of that
room and then immediately move the player to the specified destination without waiting
for the player to enter a command. This feature makes it possible to display a message to
the player and continue on from there.

This facility is illustrated by the room named "MissingKeys", which has the following
definition:

<room name="MissingKeys">
 The grate is locked and you don't have any keys.
 <passage dir="FORCED" room="OutsideGrate" />
</room>

The effect of this definition is to ensure that whenever the player enters this room, the
room will automatically be set to "OutsideGrate".

It is possible for a single room to use both the locked passage and forced motion
options. The CrowtherRooms.txt file, for example, contains the following entry for the
room just north of the curtain in the building:

<room name="Curtain1">
 <passage dir="FORCED" room="Curtain2" key="NUGGET" />
 <passage dir="FORCED" room="MissingTreasures" />
</room>

The effect of this set of motion rules is to force the player to the room named Curtain2 if
the player is carrying the nugget and to the room named MissingTreasures otherwise.
When you are testing your code for locked and forced passages, you might want to pay
particular attention to the last eight rooms in the index.html file. These rooms
implement the shimmering curtain that marks the end of the game.

 – 14 –

Section 4
Administrative Rules

Project teams
As on the Breakout and Enigma assignments, you are encouraged to work on this
assignment in teams of two, although you are free to work individually as well. Each
person in a two-person team will receive the same grade, although individual late-day
penalties will be assessed as outlined below.

Grading
Given the timing of the quarter, your assignment will be evaluated by your section leader
without an interactive grading session.

Due dates and late days
As noted on the first page of this handout, the final version of the assignment is due on
Friday, December 7th. You may use late days on this assignment, except that the days are
now calendar days rather than class days (which makes sense given that class isn’t
meeting). If you submit the assignment by 5:00P.M. on Friday the 8th, you use up one day
late, and so forth. All Adventure assignments, however, must be turned in by 5:00P.M. on
Sunday, December 9th, so that your section leaders will be able to grade it (and so you
can study for the December 10th final exam).

On the Adventure assignment, late-day accounts are calculated on an individual basis.
Thus, if you have a free late day but your partner does not, you would not be penalized if
the assignment came in on Saturday, but your partner would.

