Section Handout \#6

Portions of this handout by Eric Roberts and Kat Gregory.
Problem 1: 2D Array Warmup
Spreadsheet programs like Excel or Google Sheets allow you to sum a row, sum a column, and sum all. Given a 2D array sheet, please implement the following functions:

```
function sumRow(sheet, rowNum)
function sumCol(sheet, colNum)
function sumAll(sheet)
```

Remember to return the string "Error: [row/col] index [indexNum] out of bounds" if the indices rownum or colNum is out of bounds of sheet. For example:

```
let sheet = [[1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]]
sumRow(sheet, 1) // returns 15
sumCol(sheet, 0) // returns 12
sumAll(sheet) // returns 45
sumRow(sheet, 3) // returns "Error: row index 3 out of bounds"
```

Out of this warmup, you should have an understanding of the difference between array. length and array [0]. length for 2D arrays and when to use each.

Problem 2: Image processing

Write a function flipHorizontal that reverses a picture in the horizontal dimension. Thus, if you had a GImage containing the image on the left (of Van Gogh's Starry Night, c. 1889), calling flipHorizontal on that image would return a new GImage as shown on the right:

Problem 3: Image scale

We learned in lecture about the scale function that comes with gimages and the graphics library. However, Jerry never told us how it worked behind the scenes. Let's find out!

Write a function scale that takes a GImage and two ints representing the scale factors scale_x and scale_y in the x and y directions, respectively. For example, given this original image from the cover of Pink Floyd's "The Dark Side of the Moon", the result of the following function calls should be:

Perhaps we can simplify our approach by just considering the scaling in one direction. Once we figure out how to do that, we can extend our functionality to include both axes.

Lastly, to simplify the problem even further, you can assume you have a helper function create2DArray (rows, cols, value) that creates a 2 D array of size rows, cols where each element is initialized to value.

Problem 4: How Prime! [Back to 1D]

In the third century B.C., the Greek astronomer Eratosthenes developed an algorithm for finding all the prime numbers up to some upper limit N. To apply the algorithm, you start by writing down a list of the integers between 2 and N. For example, if N were 20, you would begin by writing down the following list:

$$
\begin{array}{lllllllllllllllllll}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

You then begin by circling the first number in the list, indicating that you have found a prime. You then go through the rest of the list and cross off every multiple of the value you have just circled, since none of those multiples can be prime. Thus, after executing the first step of the algorithm, you will have circled the number 2 and crossed off every multiple of two, as follows:
(2)

 9

11
 13

From here, you simply repeat the process by circling the first number in the list that is neither crossed off nor circled, and then crossing off its multiples. Eventually, every number in the list will either be circled or crossed out, as shown in this diagram:

The circled numbers are the primes; the crossed-out numbers are composites. This algorithm for generating a list of primes is called the sieve of Eratosthenes. Write a program that uses the sieve of Eratosthenes to generate a list of all prime numbers between 2 and 1000 .

Bonus: Y'all are amazing!

Give yourself and the people around some positive affirmations! You're doing awesome and you've all learned so much since day 1 with Karel! :) Also to all the SLs who are teaching this section, thanks for everything you do!

