
Jerry Cain Handout #36
CS 106AJ November 5, 2018

Section Handout #6
Portions of this handout by Eric Roberts and Kat Gregory.

Problem 1: 2D Array Warmup
Spreadsheet	programs	like	Excel	or	Google	Sheets	allow	you	to	sum	a	row,	sum	a	
column,	and	sum	all.	Given	a	2D	array	sheet,	please	implement	the	following	
functions:		
	

function sumRow(sheet, rowNum)
function sumCol(sheet, colNum)
function sumAll(sheet)

	
Remember	to	return	the	string	"Error: [row/col] index [indexNum] out of
bounds"	if	the	indices	rowNum	or	colNum	is	out	of	bounds	of	sheet.	For	example:	

let sheet = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

sumRow(sheet, 1) // returns 15
sumCol(sheet, 0) // returns 12
sumAll(sheet) // returns 45
sumRow(sheet, 3) // returns "Error: row index 3 out of bounds"

	
Out	of	this	warmup,	you	should	have	an	understanding	of	the	difference	between	
array.length	and	array[0].length	for	2D	arrays	and	when	to	use	each.	
	
Problem 2: Image processing
Write a function flipHorizontal that reverses a picture in the horizontal dimension.
Thus, if you had a GImage containing the image on the left (of Van Gogh’s Starry Night,
c. 1889), calling flipHorizontal on that image would return a new GImage as shown on
the right:

®

	

	

Problem 3: Image scale
We learned in lecture about the scale	function that comes with GImages	and the graphics
library. However, Jerry never told us how it worked behind the scenes. Let’s find out!

Write a function scale	that takes a GImage	and two ints	representing the scale factors
scale_x and scale_y in the x and y directions, respectively. For example, given this
original image from the cover of Pink Floyd’s “The Dark Side of the Moon”, the result of
the following function calls should be:

original aka scale(image, 1, 1) scale(image, 2, 1)

 scale(image, 0.5, 2) scale(image, 2, 2)

	

Perhaps we can simplify our approach by just considering the scaling in one direction.
Once we figure out how to do that, we can extend our functionality to include both axes.

Lastly, to simplify the problem even further, you can assume you have a helper function
create2DArray(rows, cols, value) that creates a 2D array of size rows, cols
where each element is initialized to value.

	

	

	

Problem 4: How Prime! [Back to 1D]
In the third century B.C., the Greek astronomer Eratosthenes developed an algorithm for
finding all the prime numbers up to some upper limit N. To apply the algorithm, you start
by writing down a list of the integers between 2 and N. For example, if N were 20, you
would begin by writing down the following list:

You then begin by circling the first number in the list, indicating that you have found a
prime. You then go through the rest of the list and cross off every multiple of the value
you have just circled, since none of those multiples can be prime. Thus, after executing
the first step of the algorithm, you will have circled the number 2 and crossed off every
multiple of two, as follows:

From here, you simply repeat the process by circling the first number in the list that is
neither crossed off nor circled, and then crossing off its multiples. Eventually, every
number in the list will either be circled or crossed out, as shown in this diagram:

The circled numbers are the primes; the crossed-out numbers are composites. This
algorithm for generating a list of primes is called the sieve of Eratosthenes. Write a
program that uses the sieve of Eratosthenes to generate a list of all prime numbers
between 2 and 1000.

Bonus: Y’all are amazing!
Give yourself and the people around some positive affirmations! You’re doing awesome
and you’ve all learned so much since day 1 with Karel! J Also to all the SLs who are
teaching this section, thanks for everything you do!

