
11/4/18

1

Multidimensional Arrays

Jerry Cain
CS 106AJ

November 5, 2018
slides courtesy of Eric Roberts

Multidimensional Arrays
• Because the elements of an array can be of any JavaScript

type, those elements can themselves be arrays. Arrays of
arrays are called multidimensional arrays.

• In JavaScript, you can initialize a multidimensional array by
using nested brackets in the initial value specification. For
example, the following declaration creates a 3×3 array whose
values form a magic square:

let magic = [[2, 9, 4], [7, 5, 3], [6, 1, 8]];

• This declaration creates a two-dimensional array conceptually
organized like this:

2 9 4
7 5 3
6 1 8

magic[0][0] magic[0][1] magic[0][2]

magic[1][0] magic[1][1] magic[1][2]

magic[2][0] magic[2][1] magic[2][2]

Example: Initialize a Multiplication Table
• The following constant definition initializes a multiplication

table for the digits 0 to 9 like this:

const MULTIPLICATION_TABLE = [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27],
[0, 4, 8, 12, 16, 20, 24, 28, 32, 36],
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45],
[0, 6, 12, 18, 24, 30, 36, 42, 48, 56],
[0, 7, 14, 21, 28, 35, 42, 49, 56, 63],
[0, 8, 16, 24, 32, 40, 48, 56, 64, 72],
[0, 9, 18, 27, 36, 45, 54, 63, 72, 81]

];

• The product of the single-digit integers x and y appears in
MULTIPLICATION_TABLE[x][y].

r n b q k b n r
p p p p p p p p

P P P P P P P P
R N B Q K B N R

r n b q k b n r
p p p p p p p p

P P P P P P P P
R N B Q K B N R

Exercise: Initialize a Chess Board

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Exercise: Crossword Numbering
Write a program to number
the squares in a crossword
grid if they appear at the
beginning of a word running
either across or down.
• What types would you

use to represent the data
in this grid?

• How would you represent
black squares?

• What rules can you
supply to determine if a
square is numbered?

The GImage Class
• The GImage class is used to model an image from a file. The

GImage function itself has the form:
GImage(filename,x,y)

• Because GImage objects are read from the file system, you need
to add a "load" event handler (without arguments) that
executes once the image object has been configured from the
file, as with:

where filename is the name of a file containing a stored image
and x and y are the coordinates of the upper left corner of the
image.

let image = GImage(filename,x,y);
let callback = function() {

code that further manipulates the loaded image
};
image.addEventListener("load", callback);

11/4/18

2

Images and Copyrights
• Most images that you find on the web are protected by

copyright under international law.
• Before you use a copyrighted image, you should make sure

that you have the necessary permissions. For images that
appear of the web, the hosting site often specifies what rules
apply for the use of that image. For example, images from
the www.nasa.gov site can be used freely as long as you
include the following citation identifying the source:

Courtesy NASA/JPL-Caltech

• In some cases, noncommercial use of an image may fall under
the "fair use" doctrine, which allows some uses of proprietary
material. Even in those cases, however, academic integrity
and common courtesy both demand that you cite the source of
any material that you have obtained from others.

Example of the GImage Class
function EarthImage() {

var gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
var image = GImage("EarthImage.png");
image.scale(GWINDOW_WIDTH / image.getWidth());
gw.add(image, 0, 0);
addCitation(gw, "Courtesy NASA/JPL-Caltech ");

}

EarthImage

Courtesy NASA/JPL-Caltech

function addCitation(gw, text) {
var label = GLabel(text);
var x = gw.getWidth() - label.getWidth();
var y = gw.getHeight() - CITATION_Y;
gw.add(label, x, y);

}

function EarthImage() {
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
let image = GImage("EarthImage.png");
image.addEventListener("load", function() {

image.scale(GWINDOW_WIDTH / image.getWidth());
gw.add(image, 0, 0);
addCitation(gw, "Courtesy NASA/JPL-Caltech ");

});
}

Multidimensional Arrays and Images
• One of the best examples of

multidimensional arrays is an
image, which is logically a two-
dimensional array of pixels.

• Consider, for example, the logo
for the Java Task Force at the top
right. That logo is actually an
array of pixels as shown in the
expanded diagram at the bottom.

• The GImage class allows you to
convert the data for the image
into a two-dimensional array of
pixel values. Once you have this
array, you can work with the data
to change the image.

Pixel Arrays
• If you have a GImage object, you can obtain the underlying

pixel array by calling the getPixelArray method, which
returns a two-dimensional array of numbers.

• For example, if you wanted to get the pixels from the image
file JTFLogo.png, you could do so with the following code:

let logo = GImage("JTFLogo.png");
logo.addEventEventListener("load", function () {

let pixels = logo.getPixelArray();
code that manipulates those pixels and constructs a new image

});
• The first index in a pixel array selects a row in the image,

beginning at the top. The height of the image is therefore
given by the expression pixels.length.

• The second index in a pixel array selects an individual pixel
within a row, from left to right. You can use the expression
pixels[0].length to determine the width of the image.

Pixel Values
• Each individual element in a pixel array is an integer in which

the 32 bits are interpreted as follows:

• The first byte of the pixel value specifies the transparency of
the color, which is described in more detail on a later slide.

1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1

• The next three bytes indicate the amount of red, green, and
blue in the pixel, in which each value varies from 0 to 255.
Together, these three bytes form the RGB value of the color,
which is typically expressed using six hexadecimal digits, as
in the following examples:

0xFF0000
"Red"

0x0000FF
"Blue"

0xFF00FF
"Magenta"

0xFFA500
"Orange"

0x808080
"Gray"

transparency (a) red green blue

Combining Colors of Light

11/4/18

3

Transparency
• The first byte of the pixel value specifies the transparency of

the color, which indicates how much of the background
shows through. This value is often denoted using the Greek
letter alpha (a).

• Transparency values vary from 0 to 255. The value 0 is used
to indicate a completely transparent color in which only the
background appears. The value 255 indicates an opaque color
that completely obscures the background. The standard color
constants all have alpha values of 255.

Image Manipulation
• You can use the facilities of the GImage class to manipulate

images by executing the following steps:

• The program on the next slide shows how you can apply this
technique to flip an image vertically. The general strategy for
inverting the image is simply to reverse the elements of the
pixel array.

Read an existing image from a file into a GImage object. 1.
Call getPixelArray to get the pixels.2.
Write the code to manipulate the pixel values in the array.3.
Call the GImage function to create a new image. Instead
of supplying a filename, pass in the transformed pixel
array instead.

4.

The flipVertical Function

/*
* Creates a new image which consists of the bits in the
* original flipped vertically around the center line.
*/

function flipVertical(image) {
let array = image.getPixelArray();
array.reverse();
return GImage(array);

}

Creating a Grayscale Image
• As an illustration of how to use the bitwise operators to

manipulate colors in an image, the text implements a method
called createGrayscaleImage that converts a color image
into a black-and-white image, as shown in the sample run at
the bottom of this slide.

CreateGrayscale

• The code to implement this method appears on the next slide.

The createGrayscaleImage Function
/* Creates a grayscale version of the original image */

function createGrayscaleImage(image) {
let array = image.getPixelArray();
let height = array.length;
let width = array[0].length;
for (let i = 0; i < height; i++) {

for (let j = 0; j < width; j++) {
let gray = luminance(array[i][j]);
array[i][j] = GImage.createRGBPixel(gray, gray, gray);

}
}
return GImage(array);

}

/* Calculates the luminance of a pixel using the NTSC formula */

function luminance(pixel) {
let r = GImage.getRed(pixel);
let g = GImage.getGreen(pixel);
let b = GImage.getBlue(pixel);
return Math.round(0.299 * r + 0.587 * g + 0.114 * b);

}

The End

