
Jerry Cain Handout #31S
CS 106AJ October 31, 2018

Solutions for Section #5

Solution 1: String Split
Some thought questions to ensure you understand the solution:

• Why does the for loop test rely on <= instead of <?
• What’s the best description you have for what i is tracking on behalf of the

algorithm?
• The internal if test checks to see if i === str.length first before advancing on

to check the return value of indexOf?

/**
 * Function: split
 * ---------------
 * Returns an array of the spplied string when exploded around
 * all of the characters within the supplied delimiter.
 */
function split(str, delimiters) {
 let start = 0;
 let fragments = [];
 for (let i = 0; i <= str.length; i++) {
 if (i === str.length || delimiters.indexOf(str.charAt(i)) !== -1) {
 let fragment = str.substring(start, i);
 fragments.push(fragment);
 start = i + 1;
 }
 }
 return fragments;
}

Solution 2: Keith Numbers
Some thought questions to ensure you understand the solution:

• What does the use of array throughout the implementation of isKeithNumber buy
you? What would have been the alternative?

• How would the implementation of isKeithNumber need to change had the
implementation of createDigitsArray not reversed the digits array just before
returning it?

• What’s the advantage of calling shift on the partials array within
isKeithNumber? Had the shift call been omitted, how could the implementation
of isKeithNumber change to account for the omission?

• Note that the while loop test within isKeithNumber uses < instead of <=. What
would have happened had you accidentally used <= instead?

 – 2 –

/**
 * Predicate Function: isKeithNumber
 * ---------------------------------
 * Returns true if and only if the supplied integer,
 * assumed to be positive, is a Keith number.
 *
 * It does so by maintaining as much of the Fibonacci-like
 * sequence needed to generate the next sequence number,
 * and stops when the most recently introduced number either
 * equals n (that's good!) or exceeds it (that's not good!)
 */
function isKeithNumber(n) {
 if (n <= 0) return false;
 let partials = createDigitsArray(n);
 while (partials[partials.length - 1] < n) {
 let sum = sumArray(partials);
 partials.push(sum);
 partials.shift();
 }
 return partials[partials.length - 1] === n;
}

/**
 * Function: createDigitsArray
 * ---------------------------
 * Accepts an integer called n (assumed to be positive)
 * and produces an array of all of its digits, in order,
 * such that the most significant digit is in the leading
 * position and the least significant digit is in
 * the final position.
 */
function createDigitsArray(n) {
 let digits = [];
 while (n > 0) {
 let digit = n % 10;
 digits.push(digit);
 n = Math.floor(n/10);
 }
 digits.reverse();
 return digits;
}

/**
 * Function: sumArray
 * ------------------
 * Returns the sum of all integers residing with the
 * supplied array.
 */
function sumArray(array) {
 let sum = 0;
 for (let i = 0; i < array.length; i++) {
 sum += array[i];
 }
 return sum;
}

 – 3 –

Solution 3: Disappearing Squiggles

/**
 * File: DisappearingSquiggles.js
 * -------------------
 * This graphics program allows a user to draw squiggles that,
 * once completed, live for five seconds before disappearing.
 */

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 300;
const DELAY = 5000;

/**
 * Function: DisappearingSquiggles
 * -------------------------------
 * Implements the full graphics program that allows users to
 * draw squiggles that disappear after five seconds.
 */
function DisappearingSquiggles() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let inProgress = null; // no squiggle actively being drawn
 let lastx = -1, lasty = -1; // no squiggle actively being drawn

 /**
 * Inner function: mousedownAction
 * -------------------------------
 * Initiates the squiggling process by noting that
 * no lines have been drawn just yet while recording
 * the position of the mousedown event so the first
 * drag event knows where the user first clicked.
 */
 let mousedownAction = function(e) {
 inProgress = [];
 lastx = e.getX();
 lasty = e.getY();
 };

 /**
 * Inner function: dragAction
 * --------------------------
 * Lays down a line between the most recent mouse
 * event location (either the first location from
 * mousedownAction, or from the previous dragAction),
 * caches the line that was just drawn in an array that
 * can easily be reached during erase time, and records
 * the current mouse drag location so the *next* drag
 * action knows where the next line to be drawn starts.
 */
 let dragAction = function(e) {
 let line = GLine(lastx, lasty, e.getX(), e.getY());
 gw.add(line);
 inProgress.push(line);
 lastx = e.getX();
 lasty = e.getY();
 };

 – 4 –

 /**
 * Inner function: mouseupAction
 * -----------------------------
 * Takes a snapshot of all the lines that have accumulated
 * since the last mousedown event, since those all contribute
 * to the very squiggle that needs to be erased five seconds
 * from now.
 */
 let mouseupAction = function(e) {
 let completed = inProgress; // thought question: why is this necessary?
 let removeSquiggle = function() {
 for (let i = 0; i < completed.length; i++) {
 gw.remove(completed[i]);
 }
 };
 setTimeout(removeSquiggle, DELAY);
 // next three lines are technically not necessary,
 // but good for bookkeeping purposes
 inProgress = null;
 lastx = -1;
 lasty = -1;
 }

 gw.addEventListener("mousedown", mousedownAction);
 gw.addEventListener("drag", dragAction);
 gw.addEventListener("mouseup", mouseupAction);
}

