Jerry Cain Handout #31S
CS 106AJ October 31,2018

Solutions for Section #5

Solution 1: String Split
Some thought questions to ensure you understand the solution:

e Why does the for loop test rely on <= instead of <?

e What’s the best description you have for what i is tracking on behalf of the
algorithm?

e The internal if test checks to see if i === str.1length first before advancing on
to check the return value of index0£?

/**
* Function: split

* Returns an array of the spplied string when exploded around
* all of the characters within the supplied delimiter.
*/
function split(str, delimiters) ({
let start = 0;
let fragments = [];
for (let 1 = 0; i <= str.length; i++) {
if (i === str.length || delimiters.indexOf (str.charAt(i)) !'== -1) {
let fragment = str.substring(start, i);
fragments.push (fragment) ;
start =1 + 1;
}
}

return fragments;

}

Solution 2: Keith Numbers
Some thought questions to ensure you understand the solution:

e What does the use of array throughout the implementation of isKeithNumber buy
you? What would have been the alternative?

e How would the implementation of isKeithNumber need to change had the
implementation of createDigitsArray not reversed the digits array just before
returning it?

e What’s the advantage of calling shift on the partials array within
isKeithNumber? Had the shift call been omitted, how could the implementation
of isKeithNumber change to account for the omission?

e Note that the while loop test within isKeithNumber uses < instead of <=. What
would have happened had you accidentally used <= instead?

/**
* Predicate Function: isKeithNumber

Returns true if and only if the supplied integer,
assumed to be positive, is a Keith number.

*

It does so by maintaining as much of the Fibonacci-like
sequence needed to generate the next sequence number,
and stops when the most recently introduced number either
* equals n (that's good!) or exceeds it (that's not good!)
*/
function isKeithNumber(n) {
if (n <= 0) return false;
let partials = createDigitsArray(n);
while (partials[partials.length - 1] < n) {

let sum = sumArray(partials);

partials.push(sum);

partials.shift();

* X ok X * *

}

return partials[partials.length - 1]

Il
Il
I
=]

~e

[**
* Function: createDigitsArray
Accepts an integer called n (assumed to be positive)
and produces an array of all of its digits, in order,
such that the most significant digit is in the leading
position and the least significant digit is in
* the final position.
*/
function createDigitsArray(n) {
let digits = [];
while (n > 0) {
let digit = n % 10;
digits.push(digit);
n = Math.floor(n/10);

*

* ¥ % *

}

digits.reverse();
return digits;

}
[**

* Function: sumArray

* Returns the sum of all integers residing with the
* supplied array.
*/
function sumArray(array) {
let sum = 0;
for (let i = 0; i < array.length; i++) {
sum += array[i];
}

return sum;

Solution 3: Disappearing Squiggles

/**
* File: DisappearingSquiggles. js

* This graphics program allows a user to draw squiggles that,
* once completed, live for five seconds before disappearing.

*/

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 300;
const DELAY = 5000;

/**
* Function: DisappearingSquiggles

* Implements the full graphics program that allows users to
* draw squiggles that disappear after five seconds.
*/
function DisappearingSquiggles() ({
let gw = GWindow (GWINDOW_WIDTH, GWINDOW_ HEIGHT) ;

let inProgress = null; // no squigEle actively being drawn
let lastx = -1, lasty = -1; // no squiggle actively being drawn
[**

* Inner function: mousedownAction

*

Initiates the squiggling process by noting that
no lines have been drawn just yet while recording
the position of the mousedown event so the first
* drag event knows where the user first clicked.
*/
let mousedownAction = function(e) {
inProgress = [];
lastx = e.getX();
lasty = e.get¥();
};

* %

/**
* Inner function: dragAction
| S ———
Lays down a line between the most recent mouse
event location (either the first location from
mousedownAction, or from the previous dragAction),
caches the line that was just drawn in an array that
can easily be reached during erase time, and records
the current mouse drag location so the *next* drag
* action knows where the next line to be drawn starts.
*/
let dragAction = function(e) {
let line = GLine(lastx, lasty, e.getX(), e.get¥()):;
gw.add (line) ;
inProgress.push(line) ;
lastx = e.getX();
lasty = e.get¥();

* % F ¥ *

/**
* Inner function: mouseupAction
Takes a snapshot of all the lines that have accumulated
since the last mousedown event, since those all contribute
to the very squiggle that needs to be erased five seconds
* from now.
*/
let mouseupAction = function(e) ({

let completed = inProgress; // thought question: why is this necessary?

let removeSquiggle = function() ({

for (let 1 = 0; i < completed.length; i++) {
gw.remove (completed[i]) ;

*

* ¥ *

}
};
setTimeout (removeSquiggle, DELAY) ;
// next three lines are technically not necessary,
// but good for bookkeeping purposes
inProgress = null;
lastx = -1;
lasty = -1;
}

gw.addEventListener ("mousedown", mousedownAction) ;
gw.addEventListener ("drag", dragAction);
gw.addEventListener ("mouseup", mouseupAction) ;

