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Assignment #4—HangKarel 
 
Due: Monday, November 6, 5:00P.M. 
Note: This assignment must be completed individually 
 
For Assignment #4, your mission is to write a JavaScript program that plays the classic 
word-guessing game of Hangman, but with a slight twist.  Instead of drawing the 
traditional stick-figure of a human, the potential victim is our beloved Karel the Robot.  
Your mission as the user is to save Karel by guessing all the letters in the secret word 
before the entire image of Karel appears. 
 
At the beginning of a game of HangKarel, the computer chooses a secret word from a list 
of words stored in a data file.  It then displays the word with every letter replaced by a 
hyphen.  For example, if the secret word is FRUSTRATE, the computer would display a row 
of nine hyphens, like this: 
 

--------- 
 
The computer then asks the user to choose a letter by clicking the mouse on one of the 26 
letters displayed on the graphics window.  If the user guesses a letter that is in the word, 
the word is redisplayed with all instances of that letter shown in the correct positions, 
along with any letters correctly guessed on previous turns.  For example, if the user 
begins by guessing the letter E, the computer will update the word to show that the secret 
word has an E in the final character position, as follows: 
 

--------E 
 
If the user were then lucky enough to guess R, the computer would fill in both copies of 
that letter and update the display like this: 
 

-R---R--E 
 
If the letter does not appear in the word, the user is charged with an incorrect guess.  The 
user keeps picking letters until either (1) the user has correctly guessed all the letters in 
the word or (2) the user has made seven incorrect guesses. 
 
When played by children, the morbid fascination of the game comes from the fact that 
incorrect guesses are recorded by drawing an evolving picture of the user being hanged at 
a scaffold.  For each incorrect guess, a new part of a stick-figure body is added to the 
scaffold until the hanging is complete.  In our HangKarel version, there are seven body 
parts added in the order shown in Figure 1 at the top of the next page, which means that 
the user must guess the secret word without making seven incorrect guesses. 
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HangKarel is played entirely on the graphics window using mouse events.  The window 
size is set to 500 ´ 300 (although you can certainly make the window larger if you want to 
add more graphics and special features). 
 
The bottom of the graphics window shows 26 letters—one for each letter in the 
alphabet—each of which is implemented as a GLabel.  These letters function as buttons.  
To guess a letter, the user clicks on one of these 26 buttons.  If the guess is correct, 
HangKarel updates the display of the secret word, which is located just above the 
selectable letters.  If the guess is incorrect, HangKarel adds the next body part to the top 
of the window.  The program also changes the color of the letter to record the guess.  
Incorrect guesses are shown in red (specified by the constant INCORRECT_COLOR) and 
correct guesses are shown in green (specified by the constant CORRECT_COLOR). 
 
Figure 2 shows the graphics window after the user has correctly guessed the E and R in 
FRUSTRATE but has also incorrectly guessed I and N.  As in any well-structured program, 
the location and sizes of the elements appearing in the window are specified as constants, 
which are shown in the HangKarel.js starter file in Figure 3. 
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Figure 3. The HangKarel.js starter file 

 
 
As with the Breakout program, you should design, implement, and test your program in 
several parts, each of which represents an achievable milestone.  The rest of this handout 
describes these milestones in more detail. 
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Milestone 1: Display the letters at the bottom of the window 
Your first milestone is simply to display the 26 letters at the bottom of the window.  Each 
one of these letters is stored in its own GLabel object.  The baseline for these letters is 
given by the constant LETTER_BASELINE, and each letter should be displayed in a 
monospaced bold font whose point size is given by the constant LETTER_POINTSIZE.  
What you have to do is figure out how to arrange these labels so that they show the 26 
uppercase letters and are spaced uniformly across the bottom of the window as shown in 
Figure 2. 
 
Milestone 2: Detect mouse clicks on the letters 
The fact that each letter is a separate GLabel makes it possible to use the getElementAt 
method to determine which letter the user has selected, in much the same way that you 
recognized collisions in the Breakout program.  You need to add the code to detect mouse 
clicks and define a listener function that detects when the mouse is clicked on one of the 
letters.  You first need to check whether the click is in the bottom portion of the window 
to ensure that none of the other GObject instances responds to the user action.  As long as 
the click is in that region, any object returned by getElementAt must be one of the 26 
GLabel objects containing a letter. 
 
Once you have determined which GLabel was clicked, you can get the letter by calling 
the getLabel method, which returns the string the GLabel displays.  At the moment, you 
don’t have anything particularly useful to do with that information, but that fact shouldn’t 
stop you from testing this milestone and making sure you have it working.  You can, for 
example, call console.log to display the letter on the console.  And since all letters are 
in some sense incorrect at this point, you might also change the color of the GLabel to the 
constant INCORRECT_COLOR.  You can go back and modify the code for the mouse-event 
listener when you have built the rest of the game. 
 
Milestone 3: Choose a random secret word and display it in its hidden form 
When we’ve used Hangman as an exercise in past offerings of CS 106A, reading in the 
list of possible words and choosing a random one has been part of the assignment.  In our 
dialect of JavaScript, this process is extremely simple as long as you can use the array 
operations described in Chapter 8.  Since you haven’t seen those yet, we think that the 
best thing to do is simply to give you the necessary code.  In addition to the 
HangKarel.js file you’ll be modifying, your assignment folder includes 
HangKarelWords.js, which contains the definition of a global constant so large it 
deserves its own file.  You needn’t change it or even look inside if you don’t want to.  
But you do need to rely on its declaration of a global constant called HANGKAREL_WORDS, 
which is an array of the various strings HangKarel can choose from when establishing the 
secret word.  To randomly select a word from that array, all you need to write is: 
 

let numWords = HANGKAREL_WORDS.length; 
let secret = HANGKAREL_WORDS[randomInteger(0, numWords - 1)]; 

 
The notation will make sense the day after the midterm, when we begin our discussion of 
arrays. 
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Picking the random word, as it turns out, is not the interesting part of this milestone.  In 
addition to the secret version of the word you choose, your program has to keep track of 
the mystery word as the user sees it on the graphics window.  Initially, the mystery word 
consists of a string of hyphens, one for each letter in the secret word. 
 
To complete this milestone, you need to do the following things: 
 

• Choose a random secret word from the lexicon. 
• Create the mystery version of the word by assembling a string of hyphens. 
• Create a GLabel that contains the mystery word and display it on the window.  

The word should be centered horizontally in the window at the baseline specified 
in the constants. 

 
Milestone 4: Implement the code that updates correctly guessed letters 
Your next task is to go back to the function that responds to mouse clicks and add 
whatever code you need to update the mystery word as the user guesses letters that 
appear in the word.  To do so, it is useful to write a helper function that goes through the 
secret word and updates the corresponding position in the mystery word for every letter 
position in which the guess appears.  If any such matches occur, your function that 
responds to the click action should change the color of the label to the shade of green 
represented by the constant CORRECT_COLOR.  If no matches occur, the label should be set 
to the reddish color stored in INCORRECT_COLOR. 
 
Milestone 5: Draw successive body parts of Karel for each incorrect guess 
In addition to changing the color of the letter to red, each incorrect guess has to display 
the next body part in the Karel diagram at the top of the window.  You will need to 
maintain a variable that keeps track of the number of incorrect guesses and then write the 
code necessary to add the GObject necessary to display the next piece of Karel’s body, as 
shown in Figure 1.  Effective decomposition is the key to success here. 
 
Milestone 6: Determine when the game is over and display appropriate messages 
The final step in the process consists of determining when the game is over.  The user 
wins when all letters have been guessed correctly, at which point you need to display the 
message “You win!” centered horizontally MESSAGE_BASELINE pixels above the bottom 
of the window.  The user loses when the number of incorrect guesses reaches 
MAX_INCORRECT_GUESSES.  At that point, your program should reveal the rest of the 
mystery word and display “You lose!” in the message area. 
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Extensions 
There are many things you could do with HangKarel to make it more sophisticated.  Once 
you get the basic structure working, you could try some of the following ideas: 
 

• Check to make sure that the user has not already guessed the letter and display 
some message to that effect in the message area of the window.  You will need to 
remove that message when the user enters a new guess, or even better, you can 
remove that message after a short time interval. 

• Spice up the display a little.  Each of the body parts in the assignment is a single 
GObject, but you could add more detail. 

• Animate the graphical display.  Instead of having the body parts and letters 
merely appear on the screen, you could have them move in from offscreen, as 
they often do, for example, in the class’s PowerPoint slides. 

• Expand the program to play something like Wheel of Fortune, in which the single 
word is replaced by a common phrase and in which you have to buy vowels. 

• Use your imagination! 
 
If you decide to extend HangKarel, be sure to maintain an extension-free version of your 
work so you can submit that aside the version with all the extensions. 


