
Jerry Cain Handout #24
CS 106AJ October 22, 2018

Section Handout #4
Portions of this handout by Eric Roberts, Patrick Young, Jeremy Keeshin, Mehran Sahami, Nick Troccoli, and Kat Gregory

Problem 1: Interactive, Animated Random Circles
Remember the Random Circles exercise from last week’s section? We wrote a
GraphicsProgram that drew a set of ten circles with different sizes, positions, and colors.
Let’s make it a bit more interesting. In particular, we’ll add interaction and animation.

Write an interactive GraphicsProgram that grows a random circle in every place the user
clicks. Each circle should be centered on the user’s mouse click and have a randomly
chosen color. It should also have a randomly chosen radius between 5 and 50 pixels, but
you should animate the circle growing to this size over time. Note that your program
should be able to handle multiple circles growing at once if the user clicks in quick
succession.

/* Constants */ /* Useful functions to look into */
const GWINDOW_WIDTH = 500; GWindow.addEventListener("click”, action);
const GWINDOW_HEIGHT = 300; setInterval(action, time_interval);
const MIN_RADIUS = 15; clearInterval(timer);
const MAX_RADIUS = 50; GOval.setBounds(x, y, width, height);
const TIME_STEP = 20;
const DELTA_SIZE = 1;

The following sample run shows one possible outcome if the user clicks along a
loop-de-loop trajectory:

 – 2 –

Problem 2: Simulating Physics with Bouncing Balls
Write an interactive GraphicsProgram that simulates the motion of balls bouncing under
the influence of gravitational force.

Each time the user clicks, drop a randomly-colored ball from the top left corner of the
window. The ball should begin with a random velocity in the X direction and no velocity
in the Y direction. It will fall, accelerating towards the bottom of the screen, until it hits
the bottom of the window. As it bounces, the ball will reverse direction and begin
decelerating upwards, but it will also lose some energy from the collision. It should
continue bouncing until it rolls off the right hand end of the window. Like the previous
exercise, your program should be able to handle multiple balls bouncing at once if the
user clicks in quick succession.

/* Constants */
const GWINDOW_WIDTH = 800;
const GWINDOW_HEIGHT = 300;
const DIAMETER = 20;
const MIN_X_VEL = 3;
const MAX_X_VEL = 15;
const TIME_STEP = 20;
const GRAVITY = 3; // amount Y velocity is increased each cycle
const BOUNCE_REDUCE = 0.75; // amount Y velocity is reduced during bounce

The diagram below illustrates the trajectory of the dropped ball:

 – 3 –

Problem 3: Adding commas to numeric strings
When large numbers are written out on paper, it is traditional—at least in the United
States—to use commas to separate the digits into groups of three. For example, the
number one million is usually written in the following form:

1,000,000

To make it easier for programmers to display numbers in this fashion, implement a
function

function addCommasToNumericString(digits)

that takes a string of decimal digits representing a number and returns the string formed
by inserting commas at every third position, starting on the right. For example, the code
below should produce the following outputs.

addCommasToNumericString("17") returns 17
addCommasToNumericString("1001") returns 1,001
addCommasToNumericString("12345678") returns 12,345,678
addCommasToNumericString("999999999") returns 999,999,999

Toolbox (more documentation can be found on page 200 of the course reader):
str.length
str.charAt(i)
str.substring(start)
str.substring(start, end)
str.indexOf(pattern)
str.toLowerCase()
str.toUpperCase()
str.startsWith(prefix)
str1 + str2
str1 === str2

