
Jerry Cain Handout #13
CS 106AJ October 8, 2018

Assignment #2—Simple JavaScript Programs

Due: Monday, October 15

Your job in this assignment is to write programs to solve five short programming
problems. The starter code is a zip file which when expanded produces five folders, one
per problem. Each folder contains an HTML file that can more or less be ignored, except
that you need to double-click it to load it into a browser (we recommend Chrome).
You’re to modify each JavaScript file in a simple, JavaScript-aware editor (we
recommend Atom or Sublime). As you make changes to your JavaScript files, save and
reload the companion HTML page to see how what you’ve written is working.

Problem 1 (Chapter 2, exercise 7, page 77)

It is a beautiful thing, the destruction of words.
—Syme in George Orwell’s 1984

In Orwell’s novel, Syme and his colleagues at the Ministry of Truth are engaged in
simplifying English into a more regular language called Newspeak. As Orwell describes
in his appendix entitled “The Principles of Newspeak,” words can take a variety of
prefixes to eliminate the need for the massive number of words we have in English. For
example, Orwell writes

Any word—this again applied in principle to every word in the language—could
be negatived by adding the affix un-, or could be strengthened by the affix plus-,
or, for still greater emphasis, doubleplus-. Thus, for example, uncold meant
“warm,” while pluscold and doublepluscold meant, respectively, “very cold” and
“superlatively cold.”

Open the Newspeak.js file to complete the implementations of three functions—negate,
intensify, and reinforce—that take a string, prepend the prefixes "un", "plus", and
"double" to that string, respectively, and return that new string. As an example, calling
reinforce(intensify(negate("bad"))) returns "doubleplusunbad". You can test
your implementation by loading newspeak.html into the browser.

 – 2 –

Problem 2 (Chapter 4, exercise 4, page 148)
Use the GObject hierarchy of classes to draw a rainbow that looks much like this:

Starting at the top, the seven bands in the rainbow are red, orange, yellow, green, blue,
indigo, and violet, respectively; cyan makes a lovely color for the sky. Note that Chapter
3 defines the GRect and GOval classes and does not include a graphical object to
represent an arc. It will help to think outside the box, in a more literal sense than usual.

Rather than specify the exact dimensions of each circle (and there are indeed circles
here), play around with their sizes and positioning until you get something that matches
your aesthetic sensibilities. The only things we’ll truly require are:

• The top of the arc should not be off the screen.
• Each of the arcs in the rainbow should get clipped along the sides of the window,

and not along the bottom.
Place your implementation in a file called Rainbow.js, and test your implementation by
loading and reloading rainbow.html in your browser.

Problem 3
In mathematics, there is a famous sequence of numbers called the Fibonacci sequence
after the thirteenth-century Italian mathematician Leonardo Fibonacci. The first two
terms in this sequence are 0 and 1, and every subsequent term is the sum of the preceding
two. Thus the first several terms in the Fibonacci sequence are as follows:

F0 = 0
F1 = 1
F2 = 1 (0 + 1)
F3 = 2 (1 + 1)
F4 = 3 (1 + 2)
F5 = 5 (2 + 3)
F6 = 8 (3 + 5)
F7 = 13 (5 + 8)

Write a function fib(n) that returns the nth Fibonacci number. Using the function
FactorialTable on page 97 as a model, write a function fibonacciTable(min, max)
that uses console.log to display the terms of the Fibonacci sequence between the
indices min and max. Loading fibonacci.html into your browser should embed the
following in the upper left corner of the window:

 – 3 –

The above output assumes a call to fibonacciTable(0, 15), but your fibonnaciTable
function should print the correct output for other reasonable choices of min and max.

Problem 4 (Chapter 4, exercise 6, page 149)
Write a JavaScript function that displays a pyramid like that below in a graphics window
within the browser. The pyramid consists of bricks arranged in horizontal rows, arranged
so that the number of bricks in each row decreases by one as you move upward, as shown
in the following diagram:

The pyramid should be centered in the window both horizontally and vertically. Your
program must define and rely on the following constants to make the program easier to
change:

BRICK_WIDTH The width of each brick
BRICK_HEIGHT The height of each brick
BRICKS_IN_BASE The number of bricks in the base

You should place your implementation a file called Pyramid.js, and you should test
your implementation by repeatedly loading and reloading pyramid.html.

Problem 5
Eric’s “Once upon a time” story on holism and reductionism included a passage from
Douglas Hofstadter’s Pulitzer-prize-winning book Gödel, Escher, Bach. Hofstadter’s
book contains many interesting mathematical puzzles, many of which can be expressed in

 – 4 –

the form of computer programs. Of these, most require programming skills well beyond
the second week of CS 106AJ. In Chapter XII, Hofstadter mentions a wonderful problem
that is well within the scope of the control statements from Chapter 4. The problem can
be expressed as follows:

Pick some positive integer and call it n.
If n is even, divide it by two.
If n is odd, multiply it by three and add one.
Continue this process until n is equal to one.

On page 401 of the Vintage edition, Hofstadter illustrates this process with the following
example, starting with the number 15:

 15 is odd, so I make 3n+1: 46
 46 is even, so I take half: 23
 23 is odd, so I make 3n+1: 70
 70 is even, so I take half: 35
 35 is odd, so I make 3n+1: 106
 106 is even, so I take half: 53
 53 is odd, so I make 3n+1: 160
 160 is even, so I take half: 80
 80 is even, so I take half: 40
 40 is even, so I take half: 20
 20 is even, so I take half: 10
 10 is even, so I take half: 5
 5 is odd, so I make 3n+1: 16
 16 is even, so I take half: 8
 8 is even, so I take half: 4
 4 is even, so I take half: 2
 2 is even, so I take half: 1

As you can see from this example, the numbers go up and down, but eventually—at least
for all numbers that have ever been tried—comes down to end in 1. In some respects,
this process is reminiscent of the formation of hailstones, which get carried upward by
the winds over and over again before they finally descend to the ground. Because of this
analogy, this sequence of numbers is usually called the Hailstone sequence, although it
goes by many other names as well.

Write a function hailstone that takes an integer and then uses console.log to display
the Hailstone sequence for that number, just as in Hofstadter’s book, followed by a line
showing the number of steps taken to reach 1. For example, your program should be able
to produce a output that looks like this when hailstone(17) is called:

 – 5 –

Aside: One fascinating thing about this problem is that no one has
yet been able to prove that it always stops. The number of steps in
the process can certainly get very large. How many steps, for
example, does your program take when n is 27? The conjecture that
this process always terminates is called the Collatz conjecture, and
appears in the XKCD cartoon by Randall Munroe on the right.

