
YEAH Hours
Assignment 6: Adventure

11/27/2018

Jonathan Kula

Adventure: An Overview

● Adventure is a text-based adventure game!
● You’ll be coding up a data-driven framework for running pre-written adventures.
● The player moves between rooms, picking up items in order to move through

doors or other passageways.
● Your goal is to get to the end, collecting all the treasures along the way!

JavaScript & Concepts

Objects: A New Take

● We use objects to represent real-world things!
○ Your enigma object represented the state of an enigma machine; complete with rotors and

lamps!

○ We could represent a phonebook as an object – a mapping from name to phone number.

○ We could represent a Facebook Messenger profile as an object like this:

{
name: “Jonathan Kula”
image: “https://cdn.facebook.com/profile/jonathan.kula.png”
language: “English”

}

Objects: A New Take

● Unlike your enigma object, there are millions (billions?) of these profiles!
● Every profile has to stay perfectly consistent
● It would be nice if there was a way to give a name to this particular type of

object.
● One might say the object is of a certain classification.

Classes

● ...and that’s where we get classes from!
● A class is a description of a certain type of object (like GRect, or GOval).
● How do we represent this in JavaScript?

Factory Functions!

● We usually represent this by creating a factory function for the class.
● We use this function to create Profiles. If we change the function here, the

structure of a Profile object changes everywhere!

function Profile(name, profileImage, language) {
return {

name: name,
image: profileImage,
language: language

};
}

Factory Functions!

● We usually represent this by creating a factory function for the class.
● We use this function to create Profiles. If we change the function here, the

structure of a Profile object changes everywhere!

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.name === “Jonathan Kula” // true
jonathan.image === “http://image.url/” // true
jonathan.language === “English” // true

Factory Functions!

● You can add functionality to the objects you create, too!
○ Maybe you’d like to send a message to the user?

function Profile(name, profileImage, language) {
let profile = {

name: name,
image: profileImage,
language: language

};
profile.sendMessage = function(message) {

// somehow send a message to this user
};
return profile;

}

Factory Functions!

● You can add functionality to the objects you create, too!
○ Maybe you’d like to send a message to the user?

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.sendMessage(“Hello, World!”);

Factory Functions!

● What about hiding information?
● Hiding refers specifically to restricting read and/or write access to information.
● For example: We might want to verify that the image url is valid!

function Profile(name, profileImage, language) {
// Don’t create a profile with an invalid image.
if(!isValidUrl(profileImage)) { return null; }

let profile = {
name: name,
language: language // no more image!

};
profile.getImage = function() {

return profileImage;
};
profile.setImage = function(newImageUrl) {

let valid = isValidUrl(newImageUrl);
if(valid) {

profileImage = newImageUrl;
}
return valid;

};
return profile;

}

Factory Functions!

● What about hiding information?

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.name // “Jonathan Kula”
jonathan.image // ERROR!
jonathan.getImage() // “http://image.url/”

jonathan.setImage(“cat video”) // false – not a valid url
jonathan.getImage() // “http://image.url/”

Factory Functions!

● What about hiding information?

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.name // “Jonathan Kula”
jonathan.image // ERROR!
jonathan.getImage() // “http://image.url/”

jonathan.setImage(“http://image.url/newImage”) // true – a valid url
jonathan.getImage() // “http://image.url/newImage”

Factory Functions!

● What about hiding information?
● Hiding refers specifically to restricting read and/or write access to information.
● Notice that we are now in control.

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

Before:
jonathan.image = “cat video”; // might crash website if it’s expecting a URL.

After:
jonathan.setImage(“cat video”); // no problem – we caught it!

Objects vs Classes

● Remember, Classes describe a type of object. Classes are not objects.

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);
let ryan = Profile(“Ryan Eberhardt”, “http://image.url/”, “English”);

jonathan !== Profile // true - they’re not equal!
ryan !== Profile // true - they’re not equal!

jonathan !== ryan // true - they’re not equal!

Objects vs Classes

● Remember, Classes describe a type of object. Classes are not objects.
● Properties of a class aren’t part of the class itself

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.name // “Jonathan Kula”
Profile.name // ERROR!

jonathan.sendMessage(“Hello World!”) // Sends the message “Hello World!”
Profile.sendMessage(“Hello World!”) // ERROR!

You’ve seen this before!

● Just like with graphics objects!

let gl = GLabel(“Hello World!”);
gl.setFont(“12px ‘monospace’”);
gl.getFont(); // “12px ‘monospace’”

GLabel.setFont(“12px ‘monospace’”); // ERROR!
GLabel.getFont(); // ERROR!

XML

● XML is a way of encoding information. It looks like this:

<div>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand
</object>

</div>

XML

● XML is a way of encoding information. It looks like this:

<TAG>
<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</TAG>

</TAG>

XML

● XML is a way of encoding information. It looks like this:
● Each tag is matched by a closing tag!

<TAG>
<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</TAG>

</TAG>

XML

● XML is a way of encoding information. It looks like this:
● Each individual instance of a tag is called an element.

<TAG>
<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</TAG>

</TAG>

One element

XML

● XML is a way of encoding information. It looks like this:
● Tags denote the type of element it is (e.g. “object” or “room”)

<TAG>
<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</TAG>

</TAG>

One element

XML

● XML is a way of encoding information. It looks like this:
● “Higher-up” elements are parents of what’s inside them.

<Parent>
<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</TAG>

</Parent>

Parent
element

XML

● XML is a way of encoding information. It looks like this:
● Elements may have elements inside them, called children.

<Parent>
<Child ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</Child>

</Parent>

Parent
element

C
hild E

lem
ent

XML

● XML is a way of encoding information. It looks like this:
● Each element may have zero or more attributes (with all different names).
● Elements with the same tag usually have the same set of attributes

<Parent>
<Child ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</Child>

</Parent>

Parent
element

C
hild E

lem
ent

XML

● XML is a way of encoding information. It looks like this:
● Values can totally share the same value, though!

<Parent>
<Child ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</Child>

</Parent>

Parent
element

C
hild E

lem
ent

XML

● XML is a way of encoding information. It looks like this:
● Finally, elements can have straight-up text inside of them.

<Parent>
<Child ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

DATA
</Child>

</Parent>

Parent
element

C
hild E

lem
ent

XML

● XML is a way of encoding information. It looks like this:
● Finally, elements can have straight-up text inside of them.

<Parent>
<Child ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>

This is all valid XML!
</Child>

</Parent>

Parent
element

C
hild E

lem
ent

XML in Adventure

● XML is a way of encoding information – including an adventure!
● Here’s something you’ll see in your index.html file!

<div>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand.
</object>

</div>

Parent
element

C
hild E

lem
ent

XML in Adventure

● XML is a way of encoding information – including an adventure!
● There’s one special attribute name: id

<div id=”GameData”>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand.
</object>

</div>

Parent
element

C
hild E

lem
ent

XML in Adventure

● XML is a way of encoding information – including an adventure!
● The id attribute uniquely identifies a particular element.
● id is the only case where the attribute value has to be unique.

<div id=”GameData”>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand.
</object>

</div>

Parent
element

C
hild E

lem
ent

The DOM

● The Document Object Model (or DOM) is just a fancy way to say “the way
Javascript interacts with XML”

● Here are the four methods you’ll use with Adventure:

The DOM: an example

let info = document.getElementById(“GameData”);

<div id=”GameData”>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand.
</object>
<object name=“Rope” location=“Road”>

50ft of silk rope.
</object>

</div>

The DOM: an example

let info = document.getElementById(“GameData”);
let objects = info.getElementsByTagName(“object”);
// objects = [Key, Rope]

<div id=”GameData”>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand.
</object>
<object name=“Rope” location=“Road”>

50ft of silk rope.
</object>

</div>

The DOM: an example

let info = document.getElementById(“GameDatas”);
let objects = info.getElementsByTagName(“object”);
// objects = [Key, Rope]

for(let i = 0; i < objects.length; i++) {
let name = objects[i].getAttribute(“name”);
let description = objects[i].innerHTML;
console.log(name, description);

}

<div id=”GameData”>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand.
</object>
<object name=“Rope” location=“Road”>

50ft of silk rope.
</object>

</div>

The DOM: an example

let info = document.getElementById(“GameData”);
let objects = info.getElementsByTagName(“object”);
// objects = [Key, Rope]

for(let i = 0; i < objects.length; i++) { // i = 0
let name = objects[i].getAttribute(“name”);
let description = objects[i].innerHTML;
console.log(name, description); // “Key”, “A shiny…”

}

<div id=”GameData”>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand.
</object>
<object name=“Rope” location=“Road”>

50ft of silk rope.
</object>

</div>

The DOM: an example

let info = document.getElementById(“GameData”);
let objects = info.getElementsByTagName(“object”);
// objects = [Key, Rope]

for(let i = 0; i < objects.length; i++) { // i = 1
let name = objects[i].getAttribute(“name”);
let description = objects[i].innerHTML;
console.log(name, description); // “Rope”, “50ft of…”

}

<div id=”GameData”>
<object name=“Key” location=“River”>

A shiny gold key, covered in sand.
</object>
<object name=“Rope” location=“Road”>

50ft of silk rope.
</object>

</div>

Data-Driven Programming

● What is it?
● How is it different from what you’ve been doing?

Data-Driven Programming

● What is it? Letting the logic of your program be dictated by external data
● How is it different from what you’ve been doing?

Data-Driven Programming

● What is it? Letting the logic of your program be dictated by external data
● How is it different from what you’ve been doing?

Data-Driven Programming

Before:

● Programs did one (complicated) thing.
○ They did it well, but were inflexible!

● Kinda like a prebuilt marble run, where
everything is superglued together.

Data-Driven Programming

After:

● You’re designing the building blocks.
● You get to dictate how everything

fits together, and what each piece does.

● Your users get be as creative as they want using your program!

Data-Driven Programming & Adventure

● So, are you designing an adventure?

Data-Driven Programming & Adventure

● So, are you designing an adventure? Nope!
● You’re designing a framework – a set of building blocks to make adventures

with!

Data-Driven Programming & Adventure

● So, are you designing an adventure? Nope!
● You’re designing a framework – a set of building blocks to make adventures

with!
● In a way, you’re designing not just an adventure, but all possible adventures!

Adventure

Adventure: An Overview

● Adventure is a text-based adventure game!
● You’ll be coding up a data-driven framework for running pre-written adventures.
● The player moves between rooms, picking up items in order to move through

doors or other passageways.
● Your goal is to get to the end, collecting all the treasures along the way

● In order to do this, you’ll be reading in data about the adventure from XML, and
using that data to construct an adventure!

Adventure: A Multi-File Project

● You’ll be working with several files:
● Adventure.js – Defines where your program starts. You don’t need to

change this file at all!
● AdvGame.js – Defines a single game of adventure. Responsible for

orchestrating the game, as well as reading in everything from XML. Depends on
AdvRoom, AdvObject, and AdvPassage.

● AdvRoom.js – Defines a single room, and keeps track of everything related to
the room.

● AdvObject.js – Defines a single Adventure object.
● AdvPassage.js – Defines a passage from one room to the next.

Adventure: XML Structure

<div id="GameData" style="display:none”>
<object name="KEYS" location="InsideBuilding">

a set of keys
</object>
<room name="InsideBuilding" short="Inside building">

You are inside a building, a well house for a large spring.
The exit door is to the south. There is another room to
the north, but the door is barred by a shimmering curtain.
<passage dir="SOUTH" room="OutsideBuilding" />
<passage dir="OUT" room="OutsideBuilding" />

</room>
<synonym word="Q" definition="QUIT" />

</div>

Milestone #1: Cannibalize Teaching Machine

● Your goal is to cannibalize Teaching Machine’s code (included in the starter
code), and use it for Adventure.

● The code for Teaching Machine is very close to what you’ll need in Adventure.
● TMCourse is very similar to AdvGame; and TMQuestion is close to AdvRoom.
● You’ll be changing around variable names and method names, but that’s about

it!

Milestone #2: Implement Short Descriptions

● If someone re-visits a room, you don’t want them to have to read the whole long
description of the room again!

● Instead, you should give a short description!

<room name="InsideBuilding" short="Inside building">

● You can get this short description from the short attribute on a room.
● You’ll also need a way to keep track of if the room has been visited or not!

○ Should this be a hidden attribute?

Milestone #2: Implement Short Descriptions

● If someone re-visits a room, you don’t want them to have to read the whole long
description of the room again!

● Instead, you should give a short description!

<room name="InsideBuilding" short="Inside building">

● You can get this short description from the short attribute on a room.
● You’ll also need a way to keep track of if the room has been visited or not!

○ Should this be a hidden attribute? Yes, because you don’t want anyone to make the room
unvisited.

Milestone #3: Commands

● You want the user to be able to leave the game, view the description again, etc!
● You’ll be implementing the three simplest – QUIT, HELP, and LOOK.
● These just require you to check if what’s entered match any of these, before

trying to go to a room.
● You’ll want to match based on the first word of the commands

○ The “split” method will be your friend!

● Remember, these commands should be case insensitive!

Milestone #4: Objects

● You’ll finally be reading in those object tags!
● You’ll also need to distribute objects to their rooms!
● (which means you’ll also need a way to keep track of which objects are in which

room!)
○ What file should this be in?

Milestone #4: Objects

● You’ll finally be reading in those object tags!
● You’ll also need to distribute objects to their rooms!
● (which means you’ll also need a way to keep track of which objects are in which

room!)
○ What file should this be in? AdvRoom.js

● You’ll make these four methods:
○ room.describeObjects()

○ room.addObject(obj)

○ room.removeObject(obj)

○ room.contains(obj)

Milestone #5: TAKE, DROP, & INVENTORY

● You’ll be implementing commands that need you to parse input.
● You TAKE and DROP objects, which means you’ll have to be able to check if the

object they’re trying to take/drop are either in the room or in the player’s
inventory.

● Speaking of which, you’ll need to have an inventory for the player. How might
you implement this?

Milestone #6: Synonyms

● Now, you’ll be reading in synonyms.
● Once you read in the synonyms, before you start processing a command, you’ll

have to take each word of the input, and (if there’s a matching synonym!)
replace the word with the definition.

<synonym word="Q" definition="QUIT" />

Milestone #7: Locked Passages

● Passages sometimes have a key parameter.
● If a key parameter is defined, the player needs to have that object in their

inventory in order to pass through.
● This milestone also introduces the idea of multiple passages with the same

direction. You should take the first matching passage that the user is able to go
through.

<room name="InsideBuilding" short="Inside building">
<passage dir=”IN” key=”Key” room=”SecretRoom” />
<passage dir=”IN” room=”MissingKey” />

Milestone #8: Forced Motion

● Finally, you’ll deal with a special direction, called FORCED.
● If a passage’s direction is FORCED, act as if they typed that in right away:

● First, print out the room description (either short or long, depending on if
they’ve been here before)

● Try to go in the “FORCED” direction. Just like regular directions, there may be
multiple!

