YEAH Hours
Assignment 6: Adventure

11/27/2018

Jonathan Kula

Adventure: An Overview

e Adventure is atext-based adventure game!

e You'll be coding up a data-driven framework for running pre-written adventures.

e The player moves between rooms, picking up items in order to move through
doors or other passageways.

e Your goalisto get to the end, collecting all the treasures along the way!

Welcome to Adventure!
You are standing at the end of a road before a small brick
building. A small stream flows out of the building and

down a gqully to the south. A road runs up a small hill
to the west.

>

> NORTH

Slit in rock

> NORTH

Valley beside a stream
> NORTH

Outside building

>

JavaScript & Concepts

“Eirst namels "Peter®;

"last name": "Chang",
"profile pic": "https://fbcdn-profile-a.akamaihd.net/hprofile-ak-xpfl/v/t1l.0-1/p200x200/130¢

"locale": "en US",
"timezone": -7,
"gender": "male",

Objects: A New Take

e Unlike your enigma object, there are millions (billions?) of these profiles!

e Every profile has to stay perfectly consistent

e |t would be nice if there was a way to give a name to this particular type of
object.

e One might say the object is of a certain classification.

Classes

e ..andthat’s where we get classes from!
e Aclassis adescription of a certain type of object (like GRect, or GOval).
e How do we represent this in JavaScript?

Factory Functions!

e We usually represent this by creating a factory function for the class.
e We use this function to create Profiles. If we change the function here, the
structure of a Profile object changes everywhere!

function Profile(name, profileImage, language) {
return {
name: name,
image: profilelmage,
language: language

s

Factory Functions!

e We usually represent this by creating a factory function for the class.
e We use this function to create Profiles. If we change the function here, the
structure of a Profile object changes everywhere!

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.name === “Jonathan Kula” // true
jonathan.image === “http://image.url/” // true
jonathan.language === “English” // true

Factory Functions!

e You can add functionality to the objects you create, too!
o Maybe you'd like to send a message to the user?

function Profile(name, profileImage, language) {
let profile = {
name: name,
image: profilelImage,
language: language
s
profile.sendMessage = function(message) {
// somehow send a message to this user
I

return profile;

Factory Functions!

e You can add functionality to the objects you create, too!
o Maybe you'd like to send a message to the user?

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.sendMessage(“Hello, World!”);

Factory Functions!

e What about hiding information?
e Hiding refers specifically to restricting read and/or write access to information.
e For example: We might want to verify that the image url is valid!

function Profile(name, profileImage, language) {
// Don’t create a profile with an invalid image.
if(!isValidUrl(profileImage)) { return null; }

let profile = {
name: name,
language: language // no more 1image!
}s
profile.getImage = function() {
return profilelmage;
s
profile.setImage = function(newImageUrl) {
let valid = disValidUrl(newImageUrl);
if(valid) {
profileImage = newImageUrl;
b
return valid;
s

return profile;

Factory Functions!

e What about hiding information?

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.name // “Jonathan Kula”
jonathan.image // ERROR!
jonathan.getImage() // “http://image.url/”

jonathan.setImage(“cat video”) // false - not a valid url
jonathan.getImage() // “http://image.url/”

Factory Functions!

e What about hiding information?

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.name // “Jonathan Kula”
jonathan.image // ERROR!
jonathan.getImage() // “http://image.url/”

jonathan.setImage(“http://image.url/newImage”) // true - a valid url
jonathan.getImage() // “http://image.url/newImage”

Factory Functions!

e What about hiding information?
e Hiding refers specifically to restricting read and/or write access to information.
e Notice that we are now in control.

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

Before:
jonathan.image = “cat video”; // might crash website if it’s expecting a URL.

After:

jonathan.setImage(“cat video”); // no problem - we caught it!

Objects vs Classes

e Remember, Classes describe a type of object. Classes are not objects.

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);
let ryan = Profile(“Ryan Eberhardt”, “http://image.url/”, “English”);

jonathan !== Profile // true - they’re not equal!
ryan !== Profile // true - they’re not equal!
jonathan !== ryan // true - they’re not equal!

Objects vs Classes

e Remember, Classes describe a type of object. Classes are not objects.
e Properties of a class aren’t part of the class itself

let jonathan = Profile(“Jonathan Kula”, “http://image.url/”, “English”);

jonathan.name // “Jonathan Kula”
Profile.name // ERROR!

jonathan.sendMessage(“Hello World!”) // Sends the message “Hello World!”
Profile.sendMessage(“Hello World!”) // ERROR!

You’ve seen this before!

e Just like with graphics objects!

let gl = GLabel(“Hello World!”);
gl.setFont(“12px ‘monospace’”);
gl.getFont(); /] “12px ‘monospace’”

GLabel.setFont(“12px ‘monospace’”); // ERROR!
GLabel.getFont(); // ERROR!

XML

e XML is away of encoding information. It looks like this:

<div>
<object name=“Key” location=“River”>
A shiny gold key, covered in sand
</object>
</div>

XML

e XML is away of encoding information. It looks like this:

<TAG>
<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=%“VALUE”>
DATA
</TAG>
</TAG>

XML

e XML is away of encoding information. It looks like this:
e FEachtagis matched by a closing tag!

<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=%“VALUE”>
DATA
</TAG>

XML

e XML is away of encoding information. It looks like this:
e FEachindividual instance of atagis called an element.

<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=%“VALUE”>
DATA
</TAG>

XML

e XML is away of encoding information. It looks like this:
e Tagsdenote the type of element it is (e.g. “object” or “room”)

<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=%“VALUE”>
DATA
</TAG>

XML

e XML is away of encoding information. It looks like this:
e “Higher-up” elements are parents of what’s inside them.

<TAG ATTRIBUTE=“VALUE” ATTRIBUTE2=%“VALUE”>
DATA
</TAG>

XML

e XML is away of encoding information. It looks like this:
e Elements may have elements inside them, called children.

< ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>
DATA
</ >

XML

e XML is away of encoding information. It looks like this:

e Eachelement may have zero or more attributes (with all different names).
e FElements with the same tag usually have the same set of attributes

< ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>
DATA

</ >

XML

e XML is away of encoding information. It looks like this:
e Values can totally share the same value, though!

< ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>
DATA
</ >

XML

e XML is away of encoding information. It looks like this:
e Finally, elements can have straight-up text inside of them.

< ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>
DATA
</ >

XML

e XML is away of encoding information. It looks like this:
e Finally, elements can have straight-up text inside of them.

< ATTRIBUTE=“VALUE” ATTRIBUTE2=“VALUE”>
This is all valid XML!
</ >

XML in Adventure

e XML isaway of encoding information - including an adventure!
e Here'ssomething you'll see in your index.html file!

< name=“Key” location=“River”>
A shiny gold key, covered in sand.
</ >

XML in Adventure

e XML isaway of encoding information - including an adventure!
e There's one special attribute name: id

id
< name=“Key” location=“River”>

A shiny gold key, covered in sand.
</ >

XML in Adventure

e XML isaway of encoding information - including an adventure!
e Theid attribute uniquely identifies a particular element.
e idistheonly case where the attribute value has to be unique.

id
< name=“Key” location=“River”>

A shiny gold key, covered in sand.
</ >

The DOM

e The Document Object Model (or DOM) is just a fancy way to say “the way
Javascript interacts with XML"
e Here are the four methods you’ll use with Adventure:

Returns the element with the

document . getElementById (id) : : :
specified id attribute.

element . getElementsByTagName (name) Returns an array of the elements
with the specified tag name.

Returns the value of the named

element .getAttribute (name) :
attribute.

Returns the HTML under the

element . innerHTML ik, oo
jurisdiction of an element.

GameData

< name=“Key” location=“River”>
. A shiny gold key, covered 1in sand.
The DOM: an example | *- ’

name=“Rope” location=“Road”>
50ft of silk rope.
</ >

let = document.getElementById(“GameData”);

< name=“Key” location=“River”>

The D()M: an example A shiny gold key, covered 1in sand.

</ >
name=“Rope” location=“Road”>
50ft of silk rope.
</ >

let = document.getElementById(“ ”)
let objects = .getElementsByTagName (“ ”Y
// objects = [Key, Rope]

< name=“Key” location=“River”>

The D()M: an example A shiny gold key, covered 1in sand.

</ >
name=“Rope” location=“Road”>
50ft of silk rope.
</ >

let = document.getElementById(“ ”)
let objects = .getElementsByTagName (“ ”Y
// objects = [Key, Rope]

for(let i = 0; i < objects.length; i++) {
let name = objects[i].getAttribute(“name”);
let description = objects[i].innerHTML;
console. log(name, description);

< name=“Key” location=“River”>

The DOM: an example A shiny gold key, covered 1in sand.

</ >
name=“Rope” location=“Road”>
50ft of silk rope.
</ >

let = document.getElementById(“ ”)
let objects = .getElementsByTagName (“ ”Y
// objects = [Key, Rope]

for(let i = 0; i < objects.length; i++) { // 1 = 0
let name = objects[i].getAttribute(“name”);
let description = objects[i].innerHTML;
console. log(name, description); // “Key”, “A shiny..”

< name=“Key” location=“River”>

The DOM: an example A shiny gold key, covered 1in sand.

</ >
name=“Rope” location=“Road”>
50ft of silk rope.
</ >

let = document.getElementById(“ ”)
let objects = .getElementsByTagName (“ ”Y
// objects = [Key, Rope]

for(let i = 0; i < objects.length; i++) { // 71 =1
let name = objects[i].getAttribute(“name”);
let description = objects[i].innerHTML;
console. log(name, description); // “Rope”, “50ft of..”

Data-Driven Programming

e Whatisit?
e Howisitdifferent from what you've been doing?

Data-Driven Programming

e Whatisit? Letting the logic of your program be dictated by external data
e Howisitdifferent from what you've been doing?

Data-Driven Programming

e Whatisit? Letting the logic of your program be dictated by external data
e How s it different from what you’ve been doing?

Data-Driven Programming

Before:

e Programs did one (complicated) thing.
o Theydid it well, but were inflexible!

e Kinda like a prebuilt marble run, where
everything is superglued together.

After:

You're designing the building blocks.
You get to dictate how everything
fits together, and what each piece does! ¢

1), : ' u . .
e =i ch
‘ 2L . LRI T 10 —

e Your users get be as creative as they want using your program!

Data-Driven Programming & Adventure

e So, are you designing an adventure?

Data-Driven Programming & Adventure

e So, are you designing an adventure? Nope!
e You'redesigning aframework - a set of building blocks to make adventures
with!

Data-Driven Programming & Adventure

e So, are you designing an adventure? Nope!

e You'redesigning aframework - a set of building blocks to make adventures
with!

e [naway, you're designing not just an adventure, but all possible adventures!

Adventure

Adventure: An Overview

Adventure is a text-based adventure game!

You'll be coding up a data-driven framework for running pre-written adventures.
The player moves between rooms, picking up items in order to move through
doors or other passageways.

Your goal is to get to the end, collecting all the treasures along the way

In order to do this, you'’ll be reading in data about the adventure from XML, and
using that data to construct an adventure!

Adventure: A Multi-File Project

e You'll be working with several files:

e Adventure.js - Defines where your program starts. You don’t need to
change this file at all!

e AdvGame.js - Defines asingle game of adventure. Responsible for
orchestrating the game, as well as reading in everything from XML. Depends on
AdvRoom, AdvObject, and AdvPassage.

e AdvRoom.js - Defines asingle room, and keeps track of everything related to
the room.

e AdvObject.js - Defines asingle Adventure object.

e AdvPassage.js - Defines a passage from one room to the next.

Adventure: XML Structure

<div id="GameData" style="display:none”>
<object name="KEYS" location="InsideBuilding">
a set of keys
</object>
<room name="InsideBuilding" short="Inside building">
You are 1inside a building, a well house for a large spring.
The exit door 1is to the south. There is another room to
the north, but the door is barred by a shimmering curtain.
<passage dir="SOUTH" room="OutsideBuilding" />
<passage dir="OUT" room="OutsideBuilding" />
</room>
<synonym word="Q" definition="QUIT" />
</div>

Milestone #1: Cannibalize Teaching Machine

e Your goalis to cannibalize Teaching Machine’s code (included in the starter
code), and use it for Adventure.

e The code for Teaching Machine is very close to what you’ll need in Adventure.

e TMCourseis very similar to AdvGame; and TMQuestion is close to AdvRoom.

e You'll be changing around variable names and method names, but that’s about
it!

Milestone #2: Implement Short Descriptions

e If someone re-visits aroom, you don’t want them to have to read the whole long
description of the room again!
e Instead, you should give a short description!

<room name="InsideBuilding" short="Inside building">

e Youcan get this short description from the short attribute on aroom.

e You'll also need away to keep track of if the room has been visited or not!
o Should this be a hidden attribute?

Milestone #2: Implement Short Descriptions

e If someone re-visits aroom, you don’t want them to have to read the whole long
description of the room again!
e Instead, you should give a short description!

<room name="InsideBuilding" short="Inside building">

e Youcan get this short description from the short attribute on aroom.

e You'll also need away to keep track of if the room has been visited or not!

o Should this be a hidden attribute? Yes, because you don’t want anyone to make the room
unvisited.

Milestone #3: Commands

You want the user to be able to leave the game, view the description again, etc!
You'll be implementing the three simplest - QUIT, HELP, and LOOK.

These just require you to check if what’s entered match any of these, before
trying to go to aroom.

You'll want to match based on the first word of the commands
o The “split” method will be your friend!

Remember, these commands should be case insensitive!

Milestone #4: Objects

e You'll finally be reading in those object tags!
e You'll also need to distribute objects to their rooms!

e (which means you’ll also need a way to keep track of which objects are in which
room!)
o What file should this be in?

Milestone #4: Objects

e You'll finally be reading in those object tags!
e You'll also need to distribute objects to their rooms!

e (which means you’ll also need a way to keep track of which objects are in which
room!)
o What file should this be in? AdvRoom.js

e You'll make these four methods:

o room.describeObjects()
o room.addObiject(obj)

o room.removeObject(obj)
o room.contains(obj)

Milestone #5: TAKE, DROP, & INVENTORY

e You'll be implementing commands that need you to parse input.

e You TAKE and DROP objects, which means you’ll have to be able to check if the
object they're trying to take/drop are either in the room or in the player’s
inventory.

e Speaking of which, you’ll need to have an inventory for the player. How might
you implement this?

Milestone #6: Synonyms

e Now, you'll be reading in synonymes.

e Onceyoureadinthe synonyms, before you start processing a command, you'll
have to take each word of the input, and (if there’s a matching synonym!)
replace the word with the definition.

<synonym word="Q" definition="QUIT" />

Milestone #7: Locked Passages

e Passages sometimes have a key parameter.
e |f akey parameter is defined, the player needs to have that object in their

inventory in order to pass through.
e This milestone also introduces the idea of multiple passages with the same

direction. You should take the first matching passage that the user is able to go
through.

<room name="InsideBuilding" short="Inside building">
<passage dir="IN” key="Key” room=”SecretRoom” />
<passage dir=”IN” room=”MissingKey” />

Milestone #8: Forced Motion

e Finally, you’'ll deal with a special direction, called FORCED.
e If apassage’s directionis FORCED, act as if they typed that in right away:

e First, print out the room description (either short or long, depending on if

they’ve been here before)
e Trytogointhe “FORCED” direction. Just like regular directions, there may be

multiple!

