
YEAH Hours: Breakout

10/16/18

Ryan Eberhardt
(some images borrowed from Nick Troccoli)

Nested/"closure" Functions

function DrawDots() {
 let gw = GWindow(

GWINDOW_WIDTH,
GWINDOW_HEIGHT);

gw.addEventListener(
"click", clickAction);

}

function clickAction(e) {
let dot = GOval(

e.getX() - DOT_SIZE / 2,
e.getY() - DOT_SIZE / 2,
DOT_SIZE, DOT_SIZE);

dot.setFilled(true);
gw.add(dot);

};

This doesn't work, because within clickAction, gw is out of scope.

Nested/"closure" Functions

function DrawDots() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 function clickAction(e) {

 let dot = GOval(e.getX() - DOT_SIZE / 2,
 e.getY() - DOT_SIZE / 2,
 DOT_SIZE, DOT_SIZE);
 dot.setFilled(true);

 gw.add(dot);
 };
 gw.addEventListener("click", clickAction);
}

Nested functions inherit their parents' scope!

Inheriting Scope

function DrawLines() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let line = null;
 let mousedownAction = function(e) {

line = GLine(e.getX(), e.getY(), e.getX(), e.getY());
gw.add(line);

 };
 let dragAction = function(e) {

line.setEndPoint(e.getX(), e.getY());
 };

 gw.addEventListener("mousedown", mousedownAction);
 gw.addEventListener("drag", dragAction);
}

When is sharing variables okay?

● If you need to access the variables from within event listener or animation
functions

● You access/change the variable all over the place
● There's just no other way

Handling User Interaction (Event Listeners)

● click
● dblclk
● mousedown
● mouseup
● mousemove
● drag

Handling User Interaction (Event Listeners)

● click
● dblclk
● mousedown
● mouseup
● mousemove
● drag

Animation

function AnimatedSquare() {
let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
let square = GRect(0, 0, SQUARE_SIZE, SQUARE_SIZE);
square.setFilled(true);
gw.add(square);
let stepCount = 0;
let step = function() {

 square.move(dx, dy);
 stepCount++;
 if (stepCount === N_STEPS) clearInterval(timer);

};
let timer = setInterval(step, TIME_STEP);

}

Breakout

Assignment info

● Due next Friday
● Working in pairs is allowed!
● One huge assignment! Pay attention to the milestones, and set a schedule for

yourself

const GWINDOW_WIDTH = 360; /* Width of the graphics window */
const GWINDOW_HEIGHT = 600; /* Height of the graphics window */
const N_ROWS = 10; /* Number of brick rows */
const N_COLS = 10; /* Number of brick columns */
const BRICK_ASPECT_RATIO = 4 / 1; /* Width to height ratio of a brick */
const BRICK_TO_BALL_RATIO = 3 / 2; /* Ratio of brick width to ball size */
const BRICK_TO_PADDLE_RATIO = 2 / 3; /* Ratio of brick to paddle width */
const BRICK_SEP = 2; /* Separation between bricks */
const TOP_FRACTION = 0.1; /* Fraction of window above bricks */
const BOTTOM_FRACTION = 0.05; /* Fraction of window below paddle */
const N_BALLS = 3; /* Number of balls in a game */
const TIME_STEP = 10; /* Time step in milliseconds */
const INITIAL_Y_VELOCITY = 3.0; /* Starting y velocity downward */
const MIN_X_VELOCITY = 1.0; /* Minimum random x velocity */
const MAX_X_VELOCITY = 3.0; /* Maximum random x velocity */

Constants

Constants

/* Derived constants */

const BRICK_WIDTH = (GWINDOW_WIDTH - (N_COLS + 1) * BRICK_SEP) / N_COLS;
const BRICK_HEIGHT = BRICK_WIDTH / BRICK_ASPECT_RATIO;
const PADDLE_WIDTH = BRICK_WIDTH / BRICK_TO_PADDLE_RATIO;
const PADDLE_HEIGHT = BRICK_HEIGHT / BRICK_TO_PADDLE_RATIO;
const PADDLE_Y = (1 - BOTTOM_FRACTION) * GWINDOW_HEIGHT - PADDLE_HEIGHT;
const BALL_SIZE = BRICK_WIDTH / BRICK_TO_BALL_RATIO;

Milestone 1: Set Up the Bricks

● Much like the pyramid problem from Assignment 2
● However, instead of placing bricks right next to each other, there should be

BRICK_SEP spacing between each brick and each row
● In addition, you should color each pair of rows. (You might do so by writing a

function to return a color given a row number, or a function to color a brick given a
row number.)

Milestone 2: Create the Paddle

● The paddle is a simple filled GRect
● The middle of the paddle should stay anchored to the mouse: call paddle.setLocation

(it's much easier than using paddle.move() here)
● The paddle should not be allowed to move off the screen, even when the mouse

moves to the edges of the screen

Milestone 3: Create the Ball

https://docs.google.com/file/d/1mp6na9W1qw9AKVhddCghalHZ_Mh8dE0O/preview

Milestone 3: Create the Ball

● Draw the ball in the center of the screen
● Wait for the user to click the screen (set up a "click" event listener)
● Animate the ball moving

○ Choose vx and vy (see assignment handout)

■ vy = INITIAL_Y_VELOCITY;

■ vx = randomReal(MIN_X_VELOCITY, MAX_X_VELOCITY);

■ if (randomChance()) vx = -vx;

○ Call an animation function every TIME_STEP milliseconds

○ In the animation function, move the ball by vx and vy

● Check for collisions with walls
○ Check if the coordinates of the ball exceed the dimensions of the GWindow, and if so, set vx = -vx

or vy = -vy (depending on which wall was hit)

Milestone 4: Checking for Collisions (with bricks)

● gw.getElementAt(x, y) will return the object at a particular point (or null if there
is no object there)

● However, the ball occupies more than a single pixel
● You should write a function getCollidingObject(gw, ball) that returns the

object that the ball is colliding with, by checking the 4 "corners" of the ball (or null if the
ball isn't colliding with anything)
○ This function should be pretty simple (somewhere around 8 lines long)

● In your animation function, on each step, call your getCollidingObject function
to check whether the ball is colliding with anything
○ If colliding with the paddle or a brick, vy = -vy

○ If colliding with a brick, remove the brick from the screen

● How can you tell if you've collided with the paddle or the brick??

Milestone 4: Checking for Collisions (with bricks)

● In your animation function, on each step, call your getCollidingObject function
to check whether the ball is colliding with anything
○ If colliding with the paddle or a brick, vy = -vy

○ If colliding with a brick, remove the brick from the screen

● How can you tell if you've collided with the paddle or the brick??
○ When you create the paddle, keep your paddle variable around

○ When checking for collisions, check if (collidingObject === paddle) (and if not, then

it must be a brick, because there are no other objects drawn in the window)

Milestone 4: Checking for Collisions (with bricks)

● You will likely experience a "sticky paddle" bug:

How might you fix this? (Find a way to make sure that vy is negative after colliding
with the paddle, so that the ball is forced to go up!)

Milestone 4: Checking for Collisions (with bricks)

Milestone 5

● When the ball hits the bottom of the screen, you need to stop the animation,
reset the ball, and wait for the user to click to start the next turn

● The user should have 3 "lives"
● Stop the animation when the user is out of lives, or when all the bricks are gone
● Test, test, test!

Debugging

