Jerry Cain Handout #4S
CS 106AJ September 30, 2018

Solutions to the Banish Winter Problem

/*

*

File: BanishWinter.k
*

* The BanishWinter program gets Karel adorn a series of trees with a
* cluster of beeper leaves.

*/
import "turns";
/* Main function */

function banishWinter () {
while (beepersInBag()) ({
findTree () ;
addLeavesToTree () ;

/*

* Moves Karel up to the next tree.

*

* Programming style note: Since a tree is simply a wall, this method

* can simply call moveToWall. You could therefore replace the

* findTree call in the main program with moveToWall, but the program

* might then be harder to read because it violates the "tree" metaphor
* used at the level of the main program.

*/

function findTree () {
moveToWall () ;
}

/*
* Adorns a single tree with a cluster of leaves. The precondition
* is that Karel must be immediately west of the tree, facing east;
* the postcondition is that Karel is at the bottom of the other side
* of the tree, facing east.

*/

function addLeavesToTree() {
turnLeft () ;
climbTree () ;
addLeaves () ;
descendToGround () ;
turnLeft () ;




/*
* Climbs to the top of the tree.
*/
function climbTree () {
while (rightIsBlocked()) {
move () ;
}
}
/*
* Moves Karel back to the ground.
*/
function descendToGround() {

moveToWall () ;
}

/*

*

Creates the cluster of leaves at the top of a tree. The
precondition is that Karel must be facing north at the top
of the tree; the postcondition is that Karel is still at the
* top, but on the other side of the trunk, facing south.

*/

* *

function addLeaves () {
turnRight () ;
makeBeeperSquare () ;
move () ;
turnRight () ;

}

/*
* Moves Karel forward until it is blocked by a wall.

*/

function moveToWall() {
while (frontIsClear()) {

move () ;
}
}
/*
* Creates a square of four beepers, leaving Karel in its original
* orientation. The resulting square is positioned ahead and to the
* left of Karel's starting position.
*/

function makeBeeperSquare () {
repeat (4) {
putBeeper () ;
move () ;
turnLeft () ;




